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Abstract CR-Prolog is an extension of the knowledge representation language
A-Prolog. The extension is built around the introductiorcofisistency-restoring
rules (cr-rules for short), and allows an elegant formalization of events or ex-
ceptions that are unlikely, unusual, or undesired. The flexibility of the language
has been extensively demonstrated in the literature, with examples that include
planning and diagnostic reasoning.

In this paper we present the design of an inference engine for CR-Prolog that is
efficient enough to allow the practical use of the language for medium-size appli-
cations. The capabilities of the inference engine have been successfully demon-
strated with experiments on an application independently developed for use by
NASA.

1 Introduction

In recent years, A-Prolog — a knowledge representation language based on the answer
set semantics [8] — was shown to be a useful tool for knowledge representation and
reasoning (e.g. [7,5]). The language is expressive and has a well understood method-
ology of representing defaults, causal properties of actions and fluents, various types
of incompleteness, etc. Over time, several extensions of A-Prolog have been proposed,
aimed at improving event further the expressive power of the language.

One of these extensions, called CR-Prolog [3], is built around the introduction of
consistency-restoring ruldsr-rules for short). The intuitive idea behind cr-rules is that
they are normally not applied, even when their body is satisfied. They are only applied
if the regular program (i.e. the program consisting only of conventional A-Prolog rules)
is inconsistent. The language also allows the specification of a partial preference order
on cr-rules, intuitively regulating the application of cr-rules.

One of the most immediate uses of cr-rules is an elegant encoding of events or
exceptions that are unlikely, unusual, or undesired (and preferences can be used to for-
malize the relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature
[3,1,6,4], with examples including planning and diagnostic reasoning. For example, in
[3], cr-rules have been used to model exogenous actions that may occur, unobserved,
and cause malfunctioning in a physical system. In [1,4], cr-rules have been applied to
the task finding high quality plans. The technique consists in encoding requirements
that high quality plans must satisfy, and using cr-rules to formalize exceptions to the
requirements, that should be considered only as a last resort.



Most of the uses of CR-Prolog in the literature are not strongly concerned with
computation time, and use relatively simple prototypes of CR-Prolog inference engines.
However, to allow the use of CR-Prolog for practical applications, an efficient inference
engine is needed. In this paper, we present the design of an inference engine for CR-
Prolog that is efficient enough to allow the practical use of CR-Prolog for medium-size
applications. The paper is organized as follows. In the next section, we introduce the
syntax and semantics of CR-Prolog. Section 3 contains the description of the algorithm
of the inference engine. Finally, in Section 4 we talk about related work and draw con-
clusions.

2 CR-Prolog

Like A-Prolog, CR-Prolog is a knowledge representation language that allows the for-
malization of commonsense knowledge and reasoning. The consistency-restoring rules
introduced in CR-Prolog allow the encoding of statements that should be used “as rarely
as possible, and only if strictly necessary to obtain a consistent set of conclusions,” with
preferences intuitively determining which statements should be given precedence. The
language has been shown to allow the elegant formalization of various sophisticated
reasoning tasks that are problematic to encode in A-Prolog.

The syntax of CR-Prolog is determined by a typed signalucensisting of types,
typed object constants, and typed function and predicate symbols. We assume that the
signature contains symbols for integers and for the standard functions and relations of
arithmetic. Terms are built as in first-order languages.

By simple arithmetic termsf > we mean its integer constants. Bgmplex arith-
metic termf > we mean terms built from legal combinations of arithmetic functions
and simple arithmetic terms (e.8+ 2-5 is a complex arithmetic term, b3+ - 2 5
is not). Atoms are expressions of the foptts,...,t,), wherep is a predicate symbol
with arity n andt’s are terms of suitable types. Atoms formed by arithmetic relations
are calledarithmetic atomsAtoms formed by non-arithmetic relations are caligain
atoms We allow arithmetic terms and atoms to be written in notations other than pre-
fix notation, according to the way they are traditionally written in arithmetic (e.g. we
write 3 =1+ 2 instead of= (3,+(1,2))). Literals are atoms and negated atoms, i.e.
expressions of the formp(ty,...,tn). Literalsp(ty,...,tn) and—p(ty, . ..,tn) are called
complementaryBy | we denote the literal complementaryltdrhe syntax of the state-
ments of CR-Prolog is defined as follows.

Definition 1. Aregular rulep is a statement of the form:
r:hy oRhy OR ... ORhg «Ig,l2,...Im, N0t Imy1, N0t I 2,..., N0t . Q)

wherer is a term that uniquely denotgs(called name of the rule)y, ..., I, are literals,
andh;’s andly,1,...,l, are plain literals. We calh; OR h, OR ... OR hy theheadof
the rule peadr)); I1,l2,...Im,N0t Imy1,N0t Im42, ..., not I is its body (body(r)), and
pogr), nedgr) denote, respectivelyls,...,Im} and{lms1,....,In}.

The informal reading of the rule (in terms of the reasoning of a rational agent about its
own beliefs) is the same used in A-Prolog: “if you beli¢ve. .|, and have no reason



to believelyy1,...,In, then believe one dfy,...,h.” The connective “not” is called
default negationTo simplify the presentation, we allow the rule name to be omitted
whenever possible.

A rule such thak = O is calledconstraint and is considered a shorthand of:

false< not falsel,lo,...Im, N0t Ihi1, N0t Imio, ..., NOt L.

Definition 2. A consistency-restoring rul@r cr-rule) is a statement of the form:

r:hyi oORhp OR ... OR g <=1, lp,...Im,NOt Imy1,NOt Iy 2,..., N0t . (2)
wherer, hj’'s andl;’s are as before.

The intuitive reading of a cr-rule is “if you belieVe, ..., |, and have no reason to be-
lievelmtq,...,In, then younay possiblyelieve one ohg, ..., h.” The implicit assump-

tion is that this possibility is used as little as possible, and only to restore consistency
of the agent’s beliefs.

Definition 3. A CR-Prolog prograns a pair (X, 1), whereZ is a typed signature and
I is a set of regular rules and cr-rules.

In this paper we often denote programs of CR-Prolog by their second element. The
corresponding signature is denoted B¢f1). We also extend the basic operations on
sets to programs in a natural way, so that, for exaniple,) I, is the program whose
signature and set of rules are the unions of the respective componéhtsntl 1.

The terms, atoms and literals of a prograih are denoted respectively
by termg/1), atomg/1) and literals(7). Given a set of relationdps,..., Pm},
atomg{ps,..., pm}, M) denotes the set of atoms from the signaturdioformed by
everyp;. literals({p,..., pm}, /1) is defined in a similar way. To simplify notation, we
allow the use ofitomgp, 1) as an abbreviation aitomg{p},/7) (and similarly for
literals).

Given a CR-Prolog progranfi], theregular partof I7 is the set of its regular rules,
and is denoted bgeg(/7). The set of cr-rules ofT is denoted byr (/7).

Example 1.

ri:p<notr.  rp:q< notr.
s. < not p,not q.

The regular part of the program (consisting of the last two rules) is inconsistent. Con-
sistency can be restored by applying eithgor r», or both. Since cr-rules should be
applied as little as possible, the last case is not considered. Hence, the agent is forced to
believe eithefs, p} or {s,q}.1

When different cr-rules are applicable, it is possible to specify preferences on which
one should be applied by means of atoms of the fomfer(r1,r2), wherer, r, are
names of cr-rules. The atom informally says “do not consider solutions obtained using
ro unless no solution can be found using The next example shows the effect of the
introduction of preferences in the program from Example 1.

1 The examples in this section are only aimed at illustrating the features of the language, and not
its usefulness. Please refer to e.g. [3,1] for more comprehensive examples.



Example 2.

rLip<notr.  rp:q<notr.
S. prefer(ry,ro).
— not p,not q.

The preference prevents the agent from applyingnless no solution can be found
usingri. We have seen already thatis sufficient to restore consistency. Hence, the
agent has only one set of belie{s, p, prefer(ri,r2)}

Notice that our reading of the preference atpmefer(ri,rp) rules out solutions in
whichry andr; are applied simultaneously, as the usea$ allowed only if no solution
is obtained by applying;.

As usual, we assume that rules containing variables are shorthands for the sets of
their ground instances

Now we define the semantics of CR-Prolog. In the following discusgibdenotes
an arbitrary CR-Prolog program. Also, for eveRyC cr(/1), 8(R') denotes the set of

regular rules obtained froR by replacing every connective- with <. Notice that
the regular part of any CR-Prolog program is an A-Prolog program. We will begin by
introducing some terminology.

An atom is innormal formif it is an arithmetic atom or if it is a plain atom and its
arguments are either non-arithmetic terms or simple arithmetic terms. Notice that liter-
als that are not in normal form can be mapped into literals in normal form by applying
the standard rules of arithmetic. For examé4 + 1) is mapped intop(5). For this
reason, in the following definition of the semantics of CR-Prolog, we assume that all
literals are in normal form.

Aliteral | is satisfiedby a consistent set of plain literé{denoted by§=1) if: (1) |
is an arithmetic literal and is true according to the standard arithmetic interpretation; or
(2)1 is a plain literal and € S. If | is not satisfied bys, we write S}~ |. An expression
not I, wherel is a plain literal, is satisfied b if S}~ I. A set of literals and literals
under default negation (ndj is satisfied bySif each element of the set is satisfied by
S Arule is satisfied bysif either its head is satisfied or its body is not satisfied.

Next, we introduce the transitive closure of relatjme f er. To simplify the presen-
tation, we use, whenever possible, the same term to denote both a rule and its name. For
example, given rulesy, ry € cr(f1), the fact that; is preferred ta, will be expressed
by a statemenprefer(rq,r2). Notice that this is made possible by the fact that rules are
uniguely identified by their names.

Definition 4. For every set of literals5, from the signature of1, and every1,r, from
cr(), prefs(ry,rp) is true iff (1) prefer(ri,r2) € S, or (2) there existsz € cr(/7) such
thatprefer(ry,rz) € Sandprefs(rs,ra).

To see how the definition works, consider the following example.

Example 3.GivenS= {prefer(ry,ry), preferry,rs),a q, p} andcr(l1) consisting of
cr-rulesrq,rop,r3:

— prefs(ri,rz) holds (becausprefer(ri,rp) € S).



— prefs(ra,r3) holds (becausprefer(rp,rz) € S).
— prefs(r1,r3) holds (becauserefer(ri,r2) € Sandprefs(ra, r3) holds).

The semantics of CR-Prolog is given in three steps. Intuitively, in the first step
we look for combinations of cr-rules that restore consistency. Preferences are not con-
sidered, with the exception that solutions deriving from the simultaneous use of two
cr-rules between which a preference exists are discarded.

Definition 5. Let SC literals(/1) andRC cr(I1). ¥ = (SR) is aviewof 1 if:

1. Sis an answer set aeg(/7) U 6(R), and
2. for everyry, rp, if prefs(ry,rz), then{ry,ro} Z R and
3. for everyr in R, body(r) is satisfied bys.

We denote the elements @f by 7S and 7R respectively. The cr-rules iR are said
to beapplied

Example 4.Consider the progranie;:

rl:ti. r2:p<iq4
rg:se . ra:qe.
<~ nott,not p,nots. prefer(ry,rs).

The regular part of the program is inconsistent. According to Definitior¥:5—=
({t, prefer(ry,ra)}, {r1}) is a view of P.. In fact: (1) #;S is an answer set akg(Py) U
0(¥R); (2) {r1,r3} € 7}, and (3) the body of is trivially satisfied. On the other hand,
Y= ({t,s prefenry,rz)},{r1,rs}) is not a view ofP, because it does not satisfy con-
dition (2) of the definition. In factpre f,,/ls(rl,rg) holds but{ry,r3} C 7/1R. Similarly,
¥y = ({t,prefer(ry,r3)},{r1,ro}) is not a view ofP;. In this case, condition (3) of the
definition is not satisfied, as the bodyrefdoes not hold ir¥;>. It is not difficult to show
that the views oP; are (from now on, we omit preference atoms, whenever possible, to
save space):

= ({t},{r1}) V2= ({t.a},{r1,ra})

V3= ({s}.{rs}) Ya=({s,q},{rs,ra})

s={p.a}.{rara}) 6= ({sp.a}.{ra,rs,ra})

% = <{t7 P, q}v {I’l,l’z,r4}>

The second step in the definition of the answer set abnsists in selecting the
best views with respect to the preferences specified. Particular attention must be paid to
the case when preferences are dynamic. The intuition is that we consider only prefer-
ences on which there is agreement in the views under consideration.

Definition 6. For every pair of views of1, 1 and 2, ¥1 dominatesy if there exist
ri € /%, 1z € /3 such thapref s s (r1,12).

Example 5.Let us consider the views of prograa from Example 4. Viewy; dom-
inates3: in fact, 7,°N 75> = {prefen(ry,ra)} and pre fipreferr, ry)} (11, 13) Obviously
holds. On the other handj does not dominat#s, as neitheipre fiyre ferry r3)1 (r1,r2)
nor pre fipreferry,ry)} (11, 14) hold.



Definition 7. A view, ¥, is a candidate answer set/dfif, for every viewy” of 1, v’
does not dominate’.

Example 6.According to the conclusions from Example 4,73 is
not a candidate answer d#, as it is dominated byy;. Conversely, it is not
difficult to see that¥?; is not dominated by any other view, and is therefore a
candidate answer set. Overall, the candidate answer sets Pjof are:

= {t}{r}) V2= ({t.a}, {rarah) 75 = ({p.a} {ra,ra}) 77 = ({t, p, A}, {rL,r2,ra}).

Finally, we select the candidate answer sets that are obtained by applying a minimal
set (w.r.t. set-theoretic inclusion) of cr-rules.

Definition 8. A set of literals,S, is ananswer seof 7 if:

1. there existR C cr(/7) such thafS R) is a candidate answer set/@f, and
2. for every candidate answer §&,R) of [1,R ¢ R.

Example 7.Considery; and ¥, from the list of the candidate answer sets%pffrom
Example 6. Since/;R C 7R, 75 is not an answer set &. According to Definition 8,
the answer sets &% are: 71 = ({t},{r1}) % = ({p,q}, {r2,r4}).

It is worth pointing out how the above definitions deal with cyclic preferences. For sim-
plicity, let us focus on static preferences. kdte a cr-rule that occurs in the preference
cycle. It is not difficult to see that, for any view, pre f(,VsW,,s)(r, r) holds. This pre-
vents any view where is used from being a candidate answer set. Hence, the cr-rules
involved in preference cycle cannot be used to restore consistency.

3 ThecRMODELS Algorithm

The algorithm for computing the answer sets of CR-Prolog programs is based on a
generate-and-test approach. We begin our descriptiamefoDELS by presenting the
algorithm at a high level of abstraction. Next, we increase the level of detail in various
steps, until we have a complete specificatio@rRMODELS.

At a high level of abstraction, one answer set of a CR-Prolog prodiacan be
computed as show below (Figure 1). Notice that, in the algorithnis, used to indicate
the absence of a solution. The algorithm begins by looking for a wéwuch that
|7R| = 0. If one is found,CRMODELS; checks that/ is a candidate answer set Gf
(line 5). Notice that, because’R| = 0, the condition of Definition 6 is never satisfied
(as there is n@ € #R). Hence, if a view if found foii = 0, that view is a candidate
answer set, which causes the test at brte succeed. Such a candidate answer set is
also minimal w.r.t. set-theoretic inclusion offR, which implies that/S is an answer
set of 1 according to Definition 8. Hence, the algorithm returi3and terminates.

Now let us consider what happens if no view is foundifer0. According to line4,
¥ is set tol, which causes the test on liBgo fail. Because the termination condition
of the inner loop (lineB) is true, the loop terminates,s incremented and, assuming
1 contains at least one cr-rule, execution goes back todjnehere a viewy” with



Algorithm: CRMODELS;

input: 1: CR-Prolog program

output: one answer set dfl

var i: number of cr-rules to be applied

1.i:=0{ first we look for an answer set oég(/7) }

2. while (i < cr(IT)|) do { outer loop }

3. repeat {innerloop }

4. generate new view” of 1 s.t.|#R| =i; if none is found,? := L
5. if ¥ is candidate answer set bfthen{ test fails if ¥ = L }

6. return 7S { answer set found

7. endif

8. until ¥ = L

9 i :=1i41{ consider views obtained with a larger number of cr-rdles

10. done
11 return L { signal that no answer set was fouhd

Figure 1. Algorithm CRMODELS;

|#R| = 1 is computed. It is important to notiéehat, because of the iteration over
increasing values dfin the outer loop (line2-10), the first candidate answer set found
by the algorithm is always guaranteed to be set-theoretically minimal (with respect to
the set of cr-rules used). Hence, according to Definitiott 8,is an answer set dfl.
That explains why the return statement at I61s executed without further testing. If
no candidate answer set is found fet 1, the iterations of the outer loop continue for
increasing values dfuntil either a candidate answer set is found or the condition on
line 2 becomes false (i.e. all possible combinations of cr-rules have been considered).
In this case, the algorithm returds

In our approach, both the generation and the test steps direesl 5 in Figure
1) are reduced to the computation of answer setd-8frolog programs To allow a
compact representation of the A-Prolog programs involved in these steps, we introduce
the followingmacros

— A macro-rule of the form{p(X)}. informally says that an¥ can have propertp,
and stands for the rulep(X) < not =p(X). —p(X) < not p(X).

— A macro-rule of the form— not i{p(X)}]. informally states that only betweén
and j X's can have propertyp and is expanded as follows. Letlenote the car-
dinality of the ground atoms of the forp(X) andA(m) denote the collection of
inequalities:Xyx # X, for everyk, h such thatl <k <m,1 <h<mk# h. The
macro-rule stands for:

— P(X1), p(X2), -, PX}), P(Xj11), A(j +1).
—not p(Xg),not p(Xz),...,not p(Xj_i),A(j —i).

We call the former ahoice macrcand the latter aardinality macro These macros
allow for compact programs without committing to a particular extension of A-Prolog
(and to its inference engine). Moreover, the structure of the macros is simple enough

2 A refinement of this statement is proven in [2].



to allow their translation, at the time of the implementation of the algorithm, to more
efficient expressions, specific of the inference engine used.

Central to the execution of stefisand 6 of the algorithm is the notion dfiard
reduct The hard reduct of a CR-Prolog progrdm denoted byhr(/7), maps/T into
an A-Prolog program. The importancelof{/7) is in the fact thathere is a one-to-one
correspondence between the viewslodnd the answer sets bf(/7) [2].

The signature ohr(I7) is obtained from the signature &1 by the addition of
predicate symbolappl, is_preferred bodytrue o_appl, o_is_preferred dominates
For simplicity we assume that none of those predicate names occurs in the signature of
1. We also assume that the signaturdiolready contains the predicate napre fer.
In the description of the hard reduct that follows, variaR)gossibly indexed, ranges
over the names of cr-rules.

Definition 9 (Hard Reduct of 7). Let /T be a CR-Prolog program. The hard reduct of
1, hr(1), consists of:

1. Every regular rule fronTT.

2. For every crrule r € cr(f1) with head h; OorR ... OR hg
and body l1,...Im,not  Ipig,...,n0t Iy, two rules:
hi orR ... OR h¢ <« li,...Imnot Imy1,...,n0t Iy,appl(r). and

bodytruér) <« I1,...Im,not i1, ..., not ;.
3. The generator rulge(intuitively allowing the application of arbitrary sets of cr-

rules): { appl(R)}.
4. A constraint prohibiting the application of a cr-rule when its the body is not satis-
fied (intuitively corresponding to condition (3) of Definition 5):

— not bodytrudR),appl(R).
5. Rules defining the transitive closure of relatipre fer.

is_preferredRy,Ry) — prefenR,Ry).
is_preferred Ry, Ry) < prefenRy,Rs),is_preferred Rs, Ry).

6. A rule prohibiting the application of cr-ruless; andr if ry is preferred torp (intu-
itively corresponding to condition (2) of Definition 5):

—appl(Ry),appl(Ry),is_preferred Ry, Ry).

Example 8.Let us compute the hard reduct of the following progrémn,

r1:p< nota. rpise .
rg:«—notp,nots.  r4:preferry,ra).

According to item (1) abovehr(P») contains the regular ruleg andr,. For cr-rulery,
hr(P,) contains{p < notq,appl(r1). bodytrudri) — notq.}. Forry, hr(P,) contains
{s<appl(r2). bodytruérs).}. ltems (3 — 6) result in the addition of the rules:

{appl(R)}. — not bodytruéR),appl(R).
is_preferred Ry, Ry) — prefer(Ry,Rp). —appl(Ry),appl(Ry),is_preferred Ry, Ry).
is_preferred Ry, Ry) < prefen Ry, Rs),is_preferred R3, Ry).



The answer sets dfr(P,) are:

{P.appi(r1), bodytrugry), bodytrudry), preferr, i), is preferredry,rz)}
{s.appl(r), bodytrugry), bodytrugry), preferry, i), is preferredrs,rz)}

corresponding to the viewg = ({p, prefer(ry,ra)}, {r1}), 72 = ({s, prefer(ry,ra)}, {ra}).

In the generation step of the algorithm (lihérom Figure 1), we find a view” of 1
such that# R has a specified cardinality(the task of finding aewview satisfying the
condition will be addressed later). The task is reduced to that of computing an answer
set ofhr(/7) containing exactly occurrences of atoms of the forappl(R). In turn,
this is reduced to finding an answer set of ifgeenerator off 7, y(/7), defined below.

Definition 10 (i-Generator of 7). Let 1 be a CR-Prolog program, and a non-
negative integer such that< |cr(f7)|. Thei-generator of 7 is the program:hr(/7) U

{ < noti{appl(R)}i. }.

Itis not difficult to show that;(I7) has the following properties [2]: (I is an answer
set of (1) iff M N Z(I7) is an answer set a&g(/7); (2) Every answer set of (/1)
is an answer set dfr(/7); (3) Every answer sé¥! of y(I17) contains exactly atoms of
the formappl(R).

Example 9.Consider progran®, from Example 8. Thé-generators foP, for various
values ofi and the corresponding answer sets are as follows:

= W(R) =hr(R) U{ —not0{appl(R)}0 }.
The program has no answer sets, since the constraint prevents any cr-rules from
being applied and the regular part®fis inconsistent.

= Y(R) =hr(R) U{ —notappl(R)}1 }.
The program allows the application btr-rule at a time. Its answer sets are:

{p,appl(r1), bodytrudrs), bodytrudrz), prefer(ry,rz), is_pre ferredra,rz)}
{s,appl(rz),bodytruér;),bodytrudr,), prefer(ry,ry),is_preferredry,rz)}

= Y2(P2) =hr(R) U{ < not2{appl(R)}2 }.
The program is inconsistent. In fact, of the only two cr-ruleB4none is preferred
to the other, and the constraint addedt@P,) by item (6) of Definition 9 prevents
the application of two cr-rules if one of them is preferred to the other.

Intuitively, the task of generatingreewview at each execution of lingof the algorithm

can be accomplished, with(/T), by keeping track of the answer setsyff7) found

so far and by adding suitable constraints to prevent them from being generated again.
More precisely, for each answer $¢that has already been found, we need a constraint
{— A(M),v(M).} whereA (M) is the list of the literals that occur i andv(M) is a

list notlq,notl,...,not Iy containing all the literals from the signaturetaf(7) that

do not belong taM. Let U be the set of the constraints for all the answer sets that
have already been found. It is not difficult to see that the answer sets of the program:
(M) U U correspond exactly to the “new” answer set6f7).



The test step of the algorithm (lire from Figure 1) checks whether a vie
found during the generation step is a candidate answer gét bét M be the answer
set corresponding t&". The test is reduced to checking whether a suitable A-Prolog
program is consistent. The A-Prolog program is calledtéisterfor M w.r.t 7, and is
defined below.

Definition 11 (Tester for M w.r.t. I1, (M, T)). Let [T be a CR-Prolog program and
M be an answer set corresponding to a vi#gwof 1. Thetesterfor M w.r.t. 1, T(M, 1),
contains:

1. The hard reduct ofT.

2. For each atomappl(r) € M, a rule: o_appl(r).

3. For each atomis_preferredry,ry) € M, arule: o_is_preferredrs,ra).
4. The rules:

dominates— appl(Ry),0_.appl(Ry),
is_preferred Ry, Ry),0-is_preferred Ry, Rp).
— not dominates

Intuitively, relationso_appl and o_is_preferred are used to store information about
which cr-rules have been applied to obtdMrand which preferences hold in the model.
The first rule of item (4) above embodies the conditions of Definition 6, while the
constraint enforces Definition 7.

The following is a list of important properties a{M, 1) [2]: (1) If M does not
contain any atom formed bagppl, (M, 1) is inconsistent; (2) Every answer set of
7(M,T) contains an answer set bf (1) (they differ only by the atoms formed by
relationso_appl, o_is_pre ferred anddominate} (3) M’ is an answer set af(M, IT)
iff the view corresponding t&1’ dominates the view encoded by; (4) T(M, 1) is
inconsistent iff there exists no view @1 that dominates the view/’, encoded byM
(i.e. 7 is a candidate answer set according to Definition 7).

Example 10.Consider prograr® from Example 8 and the answer sigt, of y(7):

{s,appl(r2),bodytruérs),bodytrudr,), prefer(ri,ro),is_preferredry,ra)}.

The tester foM w.r.t. P, (M, P,) consists ohr(P») together with (the constraint from
item (4) of Definition 11 has been grounded for sake of clarity):

o.appl(rz). odis_preferredry,ra).
{ dominates— appl(ry),appl(r2),is_preferredry,rp),o.is_preferredry,rs).

«— not dominates
It is not difficult to show that 7(M,”) has a unique answer set:
{p,appl(r1),bodytruérs),bodytrudr,), preferry,ry),is_preferredry,rs),
o_appl(rz),o.is_preferredrs,rp),dominates. In fact, view ¥ = ({s},{rz}) is no a
candidate answer set, as it is dominated #y= ({p},{r1}). On the other hand,
1(M’,P,), whereM'’ is the answer set encodiryg is inconsistent, implying that; is a
candidate answer set.



We can now describe the completeMODELS algorithm. We need the following
terminology. Given an A-Prolog prografi, the set of the answer sets/fdfis denoted
by a..(IT). We also define an operatat (/7), which non-deterministically returns one
of the answer sets dfl, or L is 1 is inconsistent. Recall that, given a set of litefslls
from the signature dfir(17), A (M) denotes the list (as opposed to the set) of the literals
that occur inM andv(M) is the list notly,not I, ... not Ik containing all the literals
from the signature dfir(/7) that do not belong tM.

Algorithm cRMODELS is shown in Figure 2 below. Notice that, differently from
CRMODELS;, CRMODELScomputes all the answer sets of the progrdime answer sets
of the program are stored in the set The algorithm works as follows. At the time

Algorithm: CRMODELS
input: 1: CR-Prolog program
output: the answer sets df
var i: number of cr-rules to be applied
M: a set of literals orL
</ a set of answer sets 6f
C,C': sets of constraints
1.C=0, &/ =0
2.i:=0/{ first we look for an answer set oég(/7) }
3. while (i <|er(f7)]) do { outer loop }
4. C:=0

5 repeat {innerloop }

6. if (1) U Cisinconsistenthen

7. M:=1

8. else

9. M:=ay(y (M) UC)

10. if (M, ) is inconsistenthen { answer set found
11 o = U{MNZ(M)}

12 C':=C u{ < A(Mnatomgappl,hr(I7))). }
13. endif

14. C:=CU{ < A(M),vy(M). }

15. endif

16. until M = L

17. c:=cuc

18. i ;=141 { consider views obtained with a larger number of cr-rdles
19. done

20. return .o/

Figure 2. Algorithm CRMODELS

of the first execution of lin&, the consistency of(7) is checked( is 0). From the
properties of thé-generator, it follows thagp(/7) is consistent iffeg(/7) is consistent.

If the test succeed$/ is set to one of the answer setsypf/7) and the consistency of
(M, IT) is tested. Since no cr-rules were used to genévi(eis 0), (M, 1) must be
inconsistent according to the propertieg @1, 7). Hence, the restriction &fl to > (/7)

is added to the set of answer setd'bf.«7. Notice that the set returned corresponds to
an answer set okg(/7), as expected. If instead(/7) is inconsistentM is set to, the
inner loop terminates and a new iteration of the outer loop is performed. Whe6 line
is executed againy (I7) is checked for consistency. If the program is inconsistent, the



algorithm proceeds to chegk(/7), etc. On the other hand, yi(/7) is consistent, one

of its answer sets is assignediband consistency af(M, 1) is tested. If the program

is inconsistent, it follows tha¥l encodes a candidate answer set (as well as an answer
set, as explained at the beginning of Section 3) and its restricti@if/i) is returned.
Finally, if insteadt(M, ) is found to be consistent, the algorithm needs to prevent
future computations of the answer sets/dfl1) UC (lines6 and9) from consideringV
again. This is accomplished on lidd by adding a suitable constraint to €&t

As the algorithm computes all the answer sets of the progc&moODELSheeds to
ensure that the set of cr-rules applied at each generation step is minim@l. I8et a
key role in this. As can be seen from litig, every time an answer set bf is found, we
add toC’ a constraint whose body contains the atoms of the fappl(R) that occur in
the answer set. The idea is to U0 prevent any strict superset of the corresponding
cr-rules from being applied in the future generation steps (Ivasd 9). However,
particular attention must be paid to the w@yis used, because each constrain€in
can prevent the generation step from usingsuperset of the corresponding cr-rules —
not only the strict superset$his would affect the computation when multiple answer
sets exist for a fixed choice of cr-rules. Therefore, the use of the constraints added to
C’ during one iteration of the outer loop is delayed until the beginning of the following
iteration, when the cardinality of the sets of cr-rules considered is increaskdibys
ensures that only the strict supersets of the constraiftsane considered at all times.

Let us stress that the implementation correctly deals with preference cycles, dis-
cussed at the end of Section 2: for any cr-nufeom a preference cycle and akysuch
thatappl(r) € M, there always exists an answer setr@¥, 1) (it containsM itself,
together with appropriate definitions ofappl and o_is_preferred. Hence, cr-rules
from preference cycles cannot be used by the implementation to restore consistency.

The following theorems guarantee termination, soundness, and completeagss of
MODELS. The proofs cannot be shown because of space restrictions, but can be found,
together with the description of the implementation of the algorithm, in [2].

Theorem 1. CRMODELS(/T) terminates for any CR-Prolog prograf.

Theorem 2. For every CR-Prolog progranfl, if J € CRMODELS([1), thenJ is an an-
swer set of 1.

Theorem 3. For every CR-Prolog prograntl, if J is an answer set of1, thenJ €
CRMODELS(/T).

4 Related Work and Conclusions

There are no previous published results on the design and implementation of an infer-
ence engine for CR-Prolog. However, this paper builds on years of research on the topic,
which resulted in various prototypes. Here we extend previous work by L. Kolvekar [9],
where the first description of theRMODELS algorithm was given. The algorithm and
theoretical results presented here are a substantial simplification of the ones from [9].

In this paper we have described our design of an inference engine for CR-Prolog.
The inference engine is aimed at allowing practical applications of CR-Prolog that re-
quire the efficient computation of the answer sets of medium-size programs.



The efficiency ofcRMODELShas been demonstrated experimentally2660plan-
ning problems by using a modified version of the experiment from [10]. The modifica-
tion consisted in replacing the A-Prolog planning module from [10] with a CR-Prolog
based module capable of finding plans that satisfy (if at all possbists of non-
trivial requirements, aimed at improving plan quality. The planning module has been
tested both with and without preferences on the sets of requirements. The experiments
have been successful (refer to [4] for a more detailed discussion of experiments and
results): the average time to find a plan was al2@@tseconds, against an average time
of 10 seconds for the original A-Prolog planfewith an increase of about one order
of magnitude in spite of the substantially more complex reasoning task (the quality of
plans increased, depending on the parameters used to measure it, b&8feand
96%). Moreover, the average time obtained with the CR-Prolog planner was substan-
tially lower than the limit for practical use by NASA, which 28 minutes.

The proofs of the theorems in this paper and a discussion on the implementation of
CRMODELS can be found in [2]. An implementation of the algorithm is available for
download frombttp: //www.krlab.cs.ttu.edu/Software/.

The author would like to thank Michael Gelfond for his help. This research was
partially supported, over time, by United Space Alliance contract NAS9-20000, NASA
contract NASA-NNGO5GP48G, and ATEE/DTO contract ASU-06-C-0143.
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