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In spite of the improvements in the performance of
many solvers for model-based languages, it is still pos-
sible for the search algorithm to focus on the wrong
areas of the search space, preventing the solver from
returning a solution in an acceptable amount of time.
This prospect is a real concern e.g. in an industrial
setting, where users typically expect consistent perfor-
mance. To overcome this problem, we propose a frame-
work that allows learning and using domain-specific
heuristics in the solvers. The learning is done off-
line, on representative instances from the target do-
main, and the learned heuristics are then used for
choice-point selection. In this paper we focus on An-
swer Set Programming (ASP) solvers. In our experi-
ments, the introduction of domain-specific heuristics
improved performance quite substantially on hard in-
stances, and in particular made overall performance
more consistent by reducing the number of cases in
which the solver timed out

Keywords: answer set programming, solvers, domain-
specific heuristics

1. Introduction

One of the key elements for the improvement
of the performance of solvers for Answer Set Pro-
gramming (ASP) [14,22] consists in the develop-
ment of good heuristics for guiding the exploration
of the search space. Naturally, there are cases when
even the best heuristics still perform badly. This
is typically due to the fact that such heuristics are
general-purpose, and thus may not perform well on
domains that substantially deviate from the norm.
When this happens, the performance degradation
is often dramatic, even to the point that the solver
may need to be terminated before returning an

answer. This prospect is a real concern when one
is considering using such a solver in an industrial
application, in which the solver will act as part
of a black-box from which users typically expect
consistent performance.

Various methods have been proposed in the lit-
erature to improve solver stability. A rather suc-
cessful technique involves using a collection, or
portfolio, of solvers, rather than just one. The port-
folio is initially analyzed against benchmark prob-
lems in order to identify which solvers are best
suited to which domains. At run-time, the syntac-
tic features of the program in input are used, to-
gether with the information collected on the port-
folio, to select the most promising solver. Portfolio-
based approaches have been successfully applied in
various areas, such as SAT solvers (e.g. SATzilla
[20]), quantified Boolean formula (QBF) solvers
(e.g. AQME [27]) and ASP (claspfolio [12]).

A related approach [30] from the area of QBFs
consists in making multiple heuristics available to
a single solver. At each decision point, the solver
selects the most promising heuristic. An offline
learning method is used to train the algorithm for
the selection of the most promising heuristic.

A different approach consists in having the
solver adapt to the problem in input at run-time
by using online learning techniques. This is the
case of the clause learning and conflict learning
techniques that have been quite successful in SAT
and ASP solvers (see e.g. [16,11], but also [23]),
and have brought about substantial performance
improvements. One drawback of this approach is
that learning is limited to the current program,
and the information that has been learned in one
run cannot be used in later runs of the solver.

In this paper we propose a framework, called
DORS, in which the solver learns domain-specific
heuristics while solving instances from that do-
main. The learned heuristics can then be used in
solving further instances from the domain. The
learning occurs offline, in the sense that what is
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learned while computing the models of a program
does not affect that execution of the solver. How-
ever, the updated heuristics can be immediately
used in the following runs.

At this point of development, the DORS frame-
work is aimed at DPLL-style solvers, i.e. solvers
whose algorithms follow the lines of the DPLL
procedure [8,7]. Moreover, here we focus on ASP
solvers, although the DORS framework could be
easily applied to DPLL-style solvers from other
areas, such as SAT and constraint programming
solvers. Although one could argue that in the
past few years the performance of some non-
DPLL-style solvers has been better than that of
DPLL-style solvers, for various reasons DPLL-
style solvers are still used for several applications
(e.g. dlv, [6,17]), and developing techniques that
make them more stable for practical use is impor-
tant.

The specific learning technique used here is in-
tendedly simple, but as we will show later it ap-
pears to be quite effective. In our experimental
evaluation, the use of domain-specific heuristics
yielded remarkable performance improvements on
many hard instances, and in particular made over-
all performance more consistent by reducing the
number of cases in which the solver timed out.

This paper is organized as follows. In the next
section we give some background on ASP. Next, we
discuss the basic search algorithm used in DPLL-
style ASP solvers. Then, in Section 4, we present
the DORS framework. Experimental results are
discussed in Section 5. Section 6 discusses related
work. Finally, in Section 7, we draw conclusions.

2. Syntax and Semantics of ASP

The syntax and semantics of ASP are defined as
follows. More details can be found in [14]. Let Σ
be a propositional signature containing constant,
function and predicate symbols. Terms and atoms
are formed as usual in first-order logic. A literal is
either an atom a or its strong (also called classi-
cal or epistemic) negation ¬a. The set of literals
formed from Σ is denoted by lit(Σ). A rule is a
statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm,

not lm+1, . . . ,not ln

k + m + n > 0. hi’s and li’s are ground liter-
als and not is the so-called default negation. The

intuitive meaning of the rule is that an agent
who believes {l1, . . . , lm} and has no reason to be-
lieve {lm+1, . . . , ln}, has to believe one of hi’s. The
part of the statement to the left of ← is called
head ; the part to its right is called body. Further
more, pos(r) denotes {l1, . . . , lm} and neg(r) =
{lm+1, . . . , ln}. Symbol ← can be omitted if no
li’s are specified. Often, rules of the form h ←
not h, l1, . . . , lm,not lm+1, . . . ,not ln are abbrevi-
ated into ← l1, . . . , lm,not lm+1, . . . ,not ln, and
called constraints. The intuitive meaning of a con-
straint is that its body must not be satisfied. A
program is a pair 〈Σ,Π〉, where Σ is a signature
and Π is a set of rules over Σ. We often denote pro-
grams using only the second element of the pair,
and let the signature be defined implicitly. In this
case, the signature of Π is denoted by Σ(Π). A
non-ground rule, i.e. a rule containing variables, is
interpreted as the shorthand for the set of rules ob-
tained by replacing the variables with all the pos-
sible ground terms, called grounding of the rule. A
non-ground program is viewed as the collection of
the groundings of its rules.

The semantics of ASP is defined in two steps.
The first step consists in giving the semantics of
naf-free programs, i.e. programs that do not con-
tain default negation.

A literal l is satisfied by a consistent set of lit-
erals S (denoted by S |= l) if l ∈ S. If l is not sat-
isfied by S, we write S 6|= l. An expression not l,
where l is a literal, is satisfied by S iff S 6|= l. By
extended literal we mean a literal l or the expres-
sion not l. A set of extended literals is satisfied by
S if each element of the set is satisfied by S. A
set S of literals is consistent if there is no atom a

such that a ∈ S and ¬a ∈ S. A consistent set S of
literals is closed under a naf-free program Π if, for
every rule of Π such that the body of the rule is
satisfied by S, {h1, h2, . . . , hk} ∩ S 6= ∅.

A consistent set S of literals is an answer set of
a naf-free program Π if S is closed under Π and S

is set-theoretically minimal among the sets satisfy-
ing this property. Programs without default nega-
tion and whose rules have at most one literal in the
head are called definite. It can be shown that def-
inite programs have at most one answer set. The
answer set of a definite program Π is denoted by
ans(Π).

The second step of the definition of the seman-
tics consists in reducing the computation of answer
sets of ASP programs to the computation of the
answer sets of naf-free programs.
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Let Π be an arbitrary ASP program. For any set
S of literals, the reduct of Π w.r.t. S, denoted by
ΠS , is the program obtained from Π by deleting:

– each rule r such that neg(r) ∩ S 6= ∅;
– all formulas of the form not l in the bodies of

the remaining rules.

Notice that ΠS is a naf-free program. A set S of
literals is an answer set of an ASP program Π if
it is an answer set of ΠS . A program that has no
answer sets is called inconsistent.

Because a convenient representation of alter-
natives is often important in the formalization
of knowledge, the language of ASP has been ex-
tended in various ways to allow compact encod-
ings (e.g. [25,6,2]). One frequently used construct
is that of constraint literals [25], available in smod-

els [25], clasp [11], and associated grounders.
Constraint literals are expressions of the form
m{l1, l2, . . . , lk}n, where m and n are non-negative
integers and li’s are literals as defined above. A
constraint literal is satisfied whenever the number
of literals that hold from {l1, . . . , lk} is between
m and n, inclusive. Using constraint literals, the
choice between p and q, under some set of con-
ditions Γ, can be compactly encoded by the rule
1{p, q}1 ← Γ. A rule of this form is called choice
rule.

When solving sets of problems from a given do-
main of interest, ASP programs are often divided
into a domain description and a problem instance.
Intuitively, the domain description encodes a de-
scription of the problem domain and of the solu-
tions, while the problem instance encodes a spe-
cific problem from the domain.

3. Search in ASP Solvers

The search algorithm implemented by many
ASP solvers (e.g. smodels [31], dlv [19]) follows
the lines of the DPLL procedure [8,7,13,15,21].
The algorithm for the computation of a single an-
swer set, which we will later refer to as standard
algorithm, is shown in Figure 1. The algorithm is
based on the idea of growing a particular set of
(ground) literals, often called a partial answer set,
until it is either shown to be an answer set of the
program, or it becomes inconsistent. To achieve
this, guesses have to be made as to which literals
may be in the answer set. Let us now describe the

algorithm more precisely. Given an extended lit-
eral e, not(e) denotes the expression not l if e = l

and it denotes l if e = not l. Algorithm solve

takes as input a program Π, and a partial answer
set A, which is a set of extended literals. A is ini-
tially empty. Next, function expand [31] uses sim-
ple properties of the answer set semantics to (1)
derive a collection of extended literals that follow
from Π and A, and add them to the partial answer
set, or (2) determine that the program is incon-
sistent. If the result of expand is an answer set of
Π, the algorithm returns it (and terminates). If in-
stead the program is discovered to be inconsistent,
the algorithm backtracks. In all other cases, the
partial answer set is still incomplete but consis-
tent. Then, function choose literal selects an ex-
tended literal e such that neither e nor not(e) oc-
cur in B. This is called the choice literal or choice
point. The algorithm then calls itself recursively in
order to find an answer set of Π from the partial
answer set B∪{e}. If one such answer set is found,
then the algorithm returns it. If instead no answer
set is found, then the algorithm attempts to find
an answer set of Π that contains B ∪ {not(e)}. If
the attempt succeeds, the answer set is returned.
Otherwise, the algorithm returns no model (⊥).

To see how the choices made by choose literal

influence the number of choice points picked by the
algorithm, and ultimately its performance, con-
sider the program:

P1 =
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p← not q. q ← not p.

r.

← p, r.

← q,not s.

u(X)← t(X),not v(X).
v(X)← t(X),not u(X).

t(0). t(1). . . . t(1000).

The program is clearly inconsistent. In fact, the
first two rules force either p or q to hold, but the
next three rules forbid p and q from holding si-
multaneously. In state-of-the-art solvers, expand is
actually sufficient to determine the inconsistency
of the program. On the other hand, for illustrative
purposes, let us hypothesize that inconsistency is
not detected, and that choose literal is called.
Thus, if the first call to choose literal were to se-
lect e.g. not p, then the following call to expand

would conclude that q must hold, and that incon-
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function solve ( Π : Program,A : Set of Extended Literals )
A := expand(Π, A);

if (A is answer set of Π) then return A;

if (A is not consistent or A is complete) then

return ⊥;
e := choose literal(Π, A);

A′ := solve(Π, A ∪ {e});
if (A′ = ⊥) then A′ := solve(Π, A ∪ {not(e)});
return A′;

Fig. 1. Standard Search Algorithm for ASP

sistency follows (since s is not defined by any rule
and thus the body of the corresponding constraint
is satisfied).

The algorithm would then backtrack and select
p. This time, expand would derive inconsistency
from the fact that the body of the first constraint
is satisfied. Hence, the algorithm would return ⊥
(no model). However, consider what would hap-
pen if choose literal were to select u(0) instead of
not p. Function expand would derive the conse-
quence not v(0). The choice would not cause in-
consistency.

Then, the algorithm would recurse, and possi-
bly select say u(1). As before, expand would not
detect any inconsistency, and allow the algorithm
to recurse again. Suppose now choose literal were
to pick not p. Following the same steps outlined
earlier, the algorithm would derive inconsistency.
Upon backtracking, the algorithm would also de-
rive inconsistency from choosing p. However, the
finding would only affect the current branch of
the search stemming from the selection of u(1),
and the algorithm would then backtrack, select
not u(1), and recurse.

At this point, the algorithm would be again free
to select any of the remaining u(X) literals, which
from an intuitive point of view means going in the
wrong direction. Even if the algorithm were to se-
lect not p right away, it would still have to back-
track over the choice of u(0) and explore the cor-
responding branch of the search tree that starts
from not u(0) before finally concluding that the
program is inconsistent. If instead choose literal

were to choose not p at an even later point in the
search process, the amount of backtracking that
would be needed to determine the inconsistency
of the program would be even larger, which would
substantially affect performance of the solver.

In order to reduce the chances of choose literal

making “wrong” selections, modern solvers base
literal selection on carefully designed heuristics.
For example, in smodels the selection is roughly
based on maximizing the number of consequences
that can be derived after selecting the given ex-
tended literal [31]. These techniques work well in a
number of cases, but not always. In fact, particular
features of the program can confuse the heuristics.
When this happens at an early stage of the search
process, the effect is often disastrous, causing the
solver to fail to return an answer in an acceptable
amount of time. Particularly problematic from a
practical perspective is the fact that small elabo-
rations of the program in input may result in very
different performances of the heuristics.

One method to improve solver performance is
that of restarting the search if selections made by
choose literal do not appear to lead towards a
solution (with additional bookkeeping required to
ensure the completeness of the solver). Such deter-
mination is done using heuristics – often by con-
sidering the number of conflicts recently detected
(see e.g. [24,10,18]). The benefit of using restarts
varies from domain to domain, and clearly depends
on the heuristics used to trigger the restarts. In
Section 5 we discuss the role of restarts in our ex-
perimental evaluation.

As we mentioned in the introduction, another
way of limiting the effect of wrong selections by
choose literal is that of allowing the solver to learn
about relevant conflicts at run-time. Once learned,
the information about conflicts can be used for the
early pruning of other branches of the search space
(e.g. [16,11]). Although this technique has proven
to be extremely effective, it does not address di-
rectly the issue of choose literal making wrong
choices, but rather curbs the problem by mak-
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ing some of those choices impossible after learning
has taken place, or by allowing to quickly back-
track after a wrong choice has been made. Fur-
thermore, because the learning occurs at run-time,
during the initial phase of the computation in
which learning has not yet occurred, choose literal

may once again affect efficiency negatively by tak-
ing the search process in the wrong direction. Fi-
nally, whatever has been learned in one execution
of the algorithm is discarded upon termination,
and cannot be used in later runs.

In the next section, we describe a different ap-
proach, aimed at improving directly the selections
made by choose literal and at retaining what the
algorithm has learned.

4. The DORS Framework

Our technique for learning domain-specific
heuristics and using them for literal selection ap-
plies to the situation in which one is interested in
solving a number of problem instances from a given
domain. Such situations are rather common – in
the context of ASP, a good example is provided by
the Second Answer Set Programming Competition
[9]. Moreover, this is particularly the case in indus-
trial applications, where the application contains
the domain description, and the user describes the
instance using some interface (refer e.g. to [3]),
which then automatically encodes the problem in-
stance. For example, this happens frequently in ap-
plications such as automated planning, diagnosis,
and system configuration [2,1,4,3,29].

The intuition behind the DORS framework is
rather simple. Let us assume that we are given a
domain description consisting of a set M of rules,
and a problem instance I, so that PI = M ∪ I is
consistent. If the solver’s heuristics match well the
features of PI , then the solver will find an answer
set of PI with little or no backtracking. Other-
wise, the solver will explore a branch of the search
space, detect inconsistency, backtrack over the lat-
est choice(s), explore another branch, and so on.
The larger the number of times the solver needs to
backtrack, the worse the solver’s performance will
be.

Once the computation has been completed, let
bI be the solving branch for PI , i.e. the branch that
was explored last by the solver and led to an an-
swer set. An obvious way to improve performance

of the solver on instance I would be to modify the
heuristics so that, next time the solver is presented
with I, branch bI will be explored first. This can
be accomplished by identifying the choice points
that characterize bI , and by forcing the solver’s
heuristic to make those decisions first, and behave
as usual if the branch does not lead to an answer
set. Given a set of instances {I1, . . . , Ik}, and cor-
responding solution branches B = {bI1

, . . . , bIk
},

one could tune the solver for those instances by
forcing the heuristics to explore the branches in B

first.
Doing so, however, is unlikely to improve per-

formance on other instances, unless the solution
branches from B happen to be solution branches
for the other instances as well. On the other
hand, let us consider the choice points that de-
scribe the solution branches: it seems reasonable
that, if a particular choice occurs frequently in B,
then that choice is likely to be a good choice for
other instances as well. In the general case, one
can apply machine learning techniques to extract
choices from B, rank them, e.g. based on their fre-
quency, and then have the solver’s heuristics use
the choices extracted, rather than directly using
the branches from B. The larger the original set
of instances and the more common the choices in
their solution branches, the more likely it is that
the solver will quickly find a solution branch for
new instances.

Clearly, the learned heuristics are unlikely to
yield good performance if the application domain
changes, and thus they are domain-specific. One
should also note that the learning of domain-
specific heuristics relies on the availability of train-
ing instances that are satisfiable. In fact, unsat-
isfiable instances by definition do not have solu-
tion branches, and thus provide no information for
the tuning of the heuristics. On the other hand,
once the learning has taken place, the solver can
be applied to satisfiable as well as to unsatisfiable
instances.

One possible issue with this form of learning is
that, if the set of solving branches used for learning
is large and contains few common choices, then the
learned heuristics may cause the solver to explore
a substantial number of branches before finding
an answer set, reducing performance. This is es-
pecially the case when instances from the domain
are different from each other in nature (e.g. when
the instances include both planning tasks and di-
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agnostic tasks, as in [3]). In order to avoid this, the
DORS framework is designed to allow identifying
subsets of domain instances, and learning separate
heuristics for each subset.

Next, we provide a more precise description of
our approach, discussing how choices made in pre-
vious runs of the algorithm can be extracted and
combined for future use.

In technical terms, the final result of the learn-
ing process can be viewed as the creation of a pol-
icy (see e.g. [5] for a comprehensive introduction
on the topic), that is, of a mapping from states to
probabilities of taking each available decision. To
achieve this, the algorithm from Figure 1 is first
of all modified to maintain a record of the choice
points selected, and to return the list of such choice
points (which characterize the solution branch) to-
gether with the answer set, whenever one is found.
The modified algorithm is shown in Figure 2. In
the algorithm, the list of choice points is stored
in variable S. Symbol ◦ represents concatenation.
When solvecp is initially invoked, S is the empty
list.

Now we turn our attention to combining the
information collected by solvecp into domain-
specific heuristics. Given the domain description
M and a problem instance I that is to be used to
learn the domain-specific heuristics, the decision-
sequence of I (denoted by d(I)) is ⊥ if solvecp(I ∪
M, ∅, ∅) = ⊥ and S if solvecp(I ∪ M, ∅, ∅) =
〈A,S〉 for some A. From now on, given a decision-
sequence d, we denote its nth element by dn. More-
over, given an extended literal e from d, level(e, d)
denotes the value i such that di = e (e is guar-
anteed not to occur at more than one position by
construction of the decision-sequence in solvecp).
Intuitively, level(e, d) represents the level in the
decision tree at which e was selected. This notion
is similar to that of recursion level from [28]. No-
tice that, by construction of the sequence of choice
points in solvecp, if d(I) 6= ⊥, then d(I) only enu-
merates the choice points that led directly to the
answer set. All the choice points that did not lead
directly to it, in the sense that they were later
backtracked upon, are in fact discarded every time
the algorithm backtracks.

As mentioned earlier, in order to improve the
accuracy of the learned heuristics, we allow divid-
ing the class of problem instances in subclasses,
and associate with each problem instance I an ex-
pression σ denoting the subclass it belongs to. The

intuition is that using subclasses allows to further
tailor the literal selection heuristics to the partic-
ular features of the problem instances. For exam-
ple, in a planning domain, σ might be the maxi-
mum length of the plan. The subclass of a problem
instance I is denoted by σ(I).

Let I denote the set of all problem instances
that will be used for the learning of the domain-
specific heuristics. Next, we specify a way of de-
termining how many times an extended literal e

was selected at a certain level of the decision-
sequences for the problem instances in I. Given
a non-negative integer δ, called the scaling fac-
tor, and subclass σ, the occurrence count of an ex-
tended literal e w.r.t. a level l is

oδ,σ(e, l, I) = || { I | I ∈ I ∧ σ(I) = σ ∧
e ∈ d(I) ∧
abs(l − level(e, d(I))) ≤ δ } || .

The scaling factor δ allows taking into account all
the occurrences of e at a level in the interval [l −
δ, l + δ]. If δ = 0, then only the occurrences of e at
level l are considered.

Let now E = {e1, e2, . . . , ek} be a set of ex-
tended literals, representing possible choice points
at some level l of the decision tree. The set of best
choice points among E (w.r.t. l, I, σ) is:

bestδ(l, E, σ, I) = {e | e ∈ E ∧
∀e′ ∈ E : oδ,σ(e, l, I) ≥ oδ,σ(e′, l, I)}.

Intuitively, bestδ(l, E, σ, I) returns the choice
points that, when taken at level l in the instances
of subclass σ of I considered, most frequently led
to an answer set without backtracking.

Function bestδ(l, E, σ, I) encodes the essence
of the domain-specific heuristics, or, more pre-
cisely, the policy1 for the selection of choice
points. Algorithm choose literal can now be ex-
tended to perform literal selection guided by
the domain-specific heuristics. The modified al-
gorithm, choose literal dspec, is shown in Figure
3. In choose literal dspec, argument T is the set
of extended literals that have been returned by
previous calls to the function. Elements of T are
not considered in the computation of the set of
best choice points; this is intended to force the
function to select different extended literals upon
backtracking and thus increase the breadth of
the search. If bestδ(level, E′, σ(I), I) is the empty

1We assume uniform probability of selection among the
elements of the set returned by bestδ(l, E, σ, I).
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function solvecp ( Π : Program,

A : Set of Extended Literals,
S : Ordered List of Extended Literals )

B := expand(Π, A);

if (B is answer set of Π) then return 〈B,S〉;
if (B is not consistent or B is complete) then

return ⊥;
e := choose literal(Π, B);

〈B′, S′〉 := solve(Π, B ∪ {e}, S ◦ e);

if (B′ 6= ⊥) then return 〈B′, S′〉;
〈B′, S′〉 := solve(Π, B ∪ {not(e)}, S ◦ not(e));
return 〈B′, S′〉;

Fig. 2. Search Algorithm for ASP with Explicit Tracking of Choice Points

function choose literal dspec ( Π : Program,

σ : Problem Subclass,
A : Set of Extended Literals,
level : Integer,
T : Set of Extended Literals,
I : Set of Instances,
δ : Integer)

L := lit(Σ(Π)); E := L ∪ {not l | l ∈ L};
E′ = ∅;
for each e ∈ E

if (e 6∈ A ∧ not(e) 6∈ A ∧ e 6∈ T) then

E′ := E′ ∪ {e};
end for

B := bestδ(level, E′, σ, I);
if (B 6= ∅) then chosen := one element of(B);

else chosen := choose literal(Π, A);
return chosen;

Fig. 3. Function for Literal Selection with Domain-Specific Heuristics

set, then choose literal dspec falls back to per-
forming standard extended literal selection via
choose literal. This is for instances in which the
learned heuristics do not prescribe any extended
literal for the current decision level, or in which
all the extended literals that the learned heuris-
tics prescribed have already been tried. Modify-
ing the standard solver’s algorithm in order to use
the domain-specific heuristics for choice-point se-
lection is rather straightforward. A simple version,
which for the most part follows the well-known it-
erative version of the smodels algorithm, is shown
in Figure 4.

From a practical perspective, it should be noted
that constraint literals are sometimes subject to

transformations in the pre-processing components
of ASP solvers. These transformations may involve
the introduction of special atoms, which require
a specific treatment within the DORS framework.
More details on this topic can be found in the Ap-
pendix.

5. Experimental Evaluation

In this section we report on the experimental
evaluation of the DORS framework. Our imple-
mentation was tested on several abstract problems
from the Second ASP Programming Competition
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function solve dspec ( Π : Program,
σ : Problem Subclass,
I : Set of Instances,
δ : Scaling Factor )

var S : Stack of Sets of Extended Literals;

var B, T : Set of Extended Literals;

var terminate : Boolean;

S := ∅; B := ∅; T := ∅; level := 1;
terminate := false;

while (terminate = false)

B := expand(Π, B);
if (B is answer set of Π) then

terminate := true;

else

if (B inconsistent or B complete) then

if (S = ∅) then

B := ⊥;
terminate := true;

else

/* Backtrack */

B := top(S); S := pop(S);
level := level − 1;

end if

else

/* Select a choice point */

e := choose literal dspec(Π, σ,B, level,

T, I, δ);
T := T ∪ {e};
S := push(B ∪ {not(e)}, S);
B := B ∪ {e}; level := level + 1;

end if

end if

end while

return B;

Fig. 4. Search Algorithm for ASP with Domain-Specific Heuristics for Choice-Point Selection

[9], and on the task of planning for the Reaction
Control System of the Space Shuttle [3].

The tests consisted in computing one answer set
for every problem instance considered. The solver
used in the experiments was smodels, which we
modified to obtain implementations of algorithms
solvecp and solve dspec. It should be noted that
we did not use clasp for our experiments, since
clasp is not a DPLL-style solver, being rather
based on conflict-driven clause learning (CDCL)
(e.g. [16]). Although we believe that certain simi-
larities between DPLL and CDCL make it techni-

cally possible to extend the DORS framework to
CDCL-based systems, work on implementing the
DORS framework within clasp is still in the early
stages. In the rest of the discussion, we refer to the
implementation of solve dspec within smodels as
dspec.

The evaluation on the domains from the Sec-
ond ASP Competition was performed as follows.
For each domain, we randomly generated prob-
lem instances using the generating programs pro-
vided by the authors of the benchmarks. For the
reasoning modules, we used the ones made avail-
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able by the Potassco group, and available from
http://dtai.cs.kuleuven.be/events/

ASP-competition/encodings.shtml. The rea-
soning modules were modified to associate a name
with certain rules, as explained in the Appendix.
The change does not alter the semantics of the
program, nor the performance of the solver.

For each domain, we used two sets of gener-
ating parameters and created 100 instances for
each set of parameters. The parameters were se-
lected randomly from the ranges recommended
by each benchmark’s authors. To make the in-
stances relevant in the context of improving
solver’s robustness on hard instances, we con-
strained the parameter selection so that smod-

els would take 100 seconds or more to solve 20%
to 40% of the instances. The constraint was en-
forced by performing random sampling over the
instances defined by each set of parameters con-
sidered. The collection of instances can be found
at http://marcy.cjb.net/DORS/AIComm-2011-

instances.tgz.
As explained in Section 4, DORS allows iden-

tifying subclasses of a domain, and learning dif-
ferent domain-specific heuristics for each sub-
class. For our benchmarks, we followed the sim-
ple approach of grouping the instances in sub-
classes according to the parameters passed to the
generating program when creating the instances.
For example, all the instance of the Hierarchi-
cal Clustering domain that were generated to
have 50 vertices, 10 levels, and at most 4 ver-
tices in each cluster, were assigned to the sub-
class labeled 〈50, 10, 4〉 (the reader may refer to
http://dtai.cs.kuleuven.be/events/ASP-

competition/Benchmarks/HClustering.shtml

for more details on the problem description).
Hence, each subclass contained 100 instances.

The first step of the evaluation consisted in run-
ning smodels on all the instances to form a base-
line. a rather common method for testing the per-
formance of machine learning algorithms, in which
one (1) divides the available instances in a train-
ing set and a test set, (2) uses the training set for
the learning part of the algorithm, and (3) uses
the test set to evaluate the quality of what has
been learned. Because in the practical use of ASP
solvers it is unlikely for the exact same instance to
be presented in input more than once, we chose to
keep the training and test sets disjoint.

In the first set of benchmarks, the training and
test sets were formed by random selection, so that

each instance had a 10% probability of being se-
lected for the test set. In order to compensate for
any bias in the selection of the test set, we repeated
the selection process twice, always starting from
the original set of instances, and using a different
random seed. DORS was evaluated separately on
each partitioning of the set of instances (i.e. the
domain-specific heuristics formed from one train-
ing set were only used for the corresponding test
set), and the results from the two test sets were
combined by averaging the time taken by DORS
and counting the total number of timeouts trig-
gered. For the experiments, a timeout of 6000 sec-
onds was used.

For a given partitioning of the set of instances,
dspec was first run on the training set in order
to generate the domain-specific heuristics. Next,
dspec was run on the test set, and using the
domain-specific heuristics obtained from the train-
ing set. Finally, the performance of dspec on
the test set was compared to the performance of
smodels on the same set. The results are shown in
Figure 5. In the figure, the instances are grouped
according to the time it took smodels to solve
them. The particular time ranges used in the fig-
ure were selected for the purpose of data visualiza-
tion, but do not influence the results of the com-
parison. Each column corresponds to the instances
that smodels solved within the given amount of
time. So, for example, column 10s− 50s is for the
instances that took at least 10 seconds, but less
than 50. The “T/O” column is for the instances on
which smodels timed out. For each column, row
“num” gives the number of instances that belong
to that category, e.g. in the Solitaire domain there
were 2 instances that took smodels between 10
and 50 seconds. Row “T/O” contains the number
of instances for which dspec timed out. Finally,
row “avg” shows the average time taken by dspec

to solve the instances in that category, disregard-
ing the instances on which dspec timed out (if
any).

The benchmarks in this figure and in the other
figures in this section were run on a computer with
an Intel i7 CPU at 2.93GHz running Linux. All the
solvers were constrained to use at most 512MB of
physical memory, and to run on a single processor.

In Figure 5, particularly interesting is the com-
parison between the two right-most columns, cor-
responding to instances that took 200 seconds or
more, and the other columns, corresponding to
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instances that were solved relatively quickly. In
the following discussion, we will refer to the in-
stances reported in the two right-most columns as
the “hard instances” and to the other instances
as the “easy instances.” In the figure, one can ob-
serve a remarkable difference in the performance
of dspec between the easy instances and the hard
instances.

In the easy instances, dspec performed either
similarly to smodels (e.g. with a best performance
of an average of 5 seconds for the instances that
took smodels less than 10 seconds), or worse, with
a worst case of 5 timeouts in the 19 instances that
took smodels less than 10 seconds each. That is
not entirely surprising, if one considers that the
instances in these classes where solved by smod-

els with little or no backtracking. Hence, when-
ever the domain-specific heuristics do not succeed
in taking the search directly to a solution, the ex-
tra backtracking that occurs as a result causes a
performance degradation that is likely large com-
pared to the smodels time. Investigation of the
instances in which dspec timed out on the easy in-
stances showed that in all cases the solver did not
find a solution using the domain-specific heuristics,
and reverted to the use of the standard smodels

heuristics. The standard heuristic, because of its
own brittleness, was not effective from the partic-
ular configuration of the search algorithm reached
using the domain-specific heuristics.

On the other hand, in the hard instances, dspec

performed remarkably well. Whereas smodels

timed out 19 times out of a total of 27 hard in-
stances, dspec only timed out 5 times. Moreover,
the average times were low, with a best average of
49 seconds on the instances of the Solitaire domain
for which smodels timed out.

As we explained earlier, the goal of this paper is
to improve the performance of DPLL-style solvers.
Nonetheless, we believe that it is important to al-
low the reader to understand how the performance
of smodels and dspec compares to that of clasp,
which is currently one of the best performing ASP
solvers. When run with clasp, none of the in-
stances from Figure 5 timed out. Even more re-
markably, on average an answer set was found in
less than 0.01 seconds.

For the second set of benchmarks, we adopted
a different method for forming the training and
test sets, aimed at assessing the robustness of the
domain-specific heuristics learned. We began by

analyzing the performance of smodels in the pre-
vious benchmark, and, for each domain, identi-
fied the set of generating parameters that gave the
hardest set of instances; in line with the distinction
made earlier between easy and hard instances, the
metric for measuring the hardness of a set of gen-
erating parameters was the number of instances,
among the ones generated with those parameters,
for which smodels took 200 seconds or more. The
100 instances, obtained earlier, for the sets of gen-
erating parameters identified in this way were se-
lected for use in the new benchmark.

Next, rather than selecting the test instances
randomly, we used in the test set the instances that
were solved by smodels in 50 seconds or more.
With this selection method, we aimed at assessing
how well domain-specific heuristics learned from
easier instances perform on harder instances. The
results of the evaluation are shown in Figure 6.

By inspecting the figure, one can observe that,
once again, the domain-specific heuristics per-
formed remarkably well on the hard instances of
the test set, in spite the fact that the training
process was performed using only easy instances.
Overall, dspec timed out 18 times while smodels

timed out 76 times; dspec had a best average time
of 51 seconds on the instances of the Hierarchi-
cal domain for which smodels timed out, and im-
provements of one order of magnitude in the same
category for the other domains. As before, the per-
formance on the easy instances was not as good as
the performance on the hard instances, although
it was more consistent than in the previous exper-
iment, as demonstrated in particular by the lack
of timeouts. It should also be noted that these re-
sults were obtained using domain-specific heuris-
tics often trained on a relatively small number of
instances. For example, in the Solitaire domain the
training set consisted only of 32% of the instances
(across all the domains, the training set consisted
on average of 61.5% of the instances).

As a reference, the performance of clasp on the
same test instances is shown in Figure 7. It is in-
teresting to note that even clasp timed out in
2 occasions (one instance of Solitaire and one of
GraphPartitioning). Moreover, GraphPartitioning
and 15Puzzle appear to be by far the hardest do-
mains, with average times that are respectively 3
and 2 orders of magnitude larger than the times
for the other domains. This is not surprising con-
sidering that, as reported in the figure, the average
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Domain: Solitaire

10s- 50s- 100s- 200s-
< 10s 50s 100s 200s 6000s T/O

num 19 2 0 1 0 15
T/O 5 0 0 0 0 3
avg 335.032 19.374 N/A 8.781 N/A 49.409

Domain: HierarchicalClustering

10s- 50s- 100s- 200s-
< 10s 50s 100s 200s 6000s T/O

num 32 0 0 1 3 2
T/O 2 0 0 0 0 2
avg 15.451 N/A N/A 21.686 1797.443 N/A

Domain: GraphPartitioning

10s- 50s- 100s- 200s-
< 10s 50s 100s 200s 6000s T/O

num 20 6 7 3 3 0
T/O 0 0 0 0 0 0
avg 4.971 12.191 101.857 166.456 756.591 N/A

Domain: 15Puzzle

10s- 50s- 100s- 200s-
< 10s 50s 100s 200s 6000s T/O

num 19 12 3 1 2 2
T/O 0 0 0 0 0 0
avg 10.716 63.331 15.219 28.097 195.021 263.482

Fig. 5. Performance comparison for 2nd ASP Competition Domains; 90% of instances used for training.

numbers of conflicts and restarts in those domains
are rather large compared to the numbers for the
other two domains; furthermore, all the instances
in GraphPartitioning are non-tight.

Our experimental evaluation also included prob-
lem instances from the task of planning for the Re-
action Control System (RCS) of the Space Shuttle
[26,3].

A collection of problem instances from the
domain of the RCS is publicly available, at
http://www.krlab.cs.ttu.edu/Software/

Download/, together with the ASP encodings of
the model of the RCS and of various reasoning
modules. The interested reader may refer to [26]
for a description of the instances. For our evalu-
ation, we used the public instances with no elec-
trical faults, 8 and 10 mechanical faults respec-
tively, and for which a plan of length 6 or less was
found in the experiments discussed in [26,3]. The
aim of the last constraint was to ensure the avail-

ability of a sufficient number of training instances
to form the domain-specific heuristics. Using these
instances, we compared the performance of smod-

els and dspec using maximum plan lengths rang-
ing between 6 and 14 steps.

As before, first we ran all the instances with
smodels and a timeout of 6000 seconds in order
to form the baseline. In order to focus on the ro-
bustness of the heuristics, the partitioning in train-
ing and test sets was again based on the execution
time of smodels in the baseline. In order to have
training sets containing about approximately 70%
of the instances, we set the selection threshold to
50 seconds.

The problem subclasses were defined by the
pair 〈maxtime, goal〉, where maxtime specifies the
maximum plan length and goal is the goal of the
planning task (12 such goals are defined for the do-
main). Each subclass contained on average 12 in-
stances. Although, as can be seen later, these sub-
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Domain: Solitaire

50s- 100s- 200s-
100s 200s 6000s T/O

num 2 2 13 51
T/O 0 0 1 6
avg 52.447 443.031 678.629 665.019

Domain: HierarchicalClustering

50s- 100s- 200s-
100s 200s 6000s T/O

num 1 2 10 13
T/O 0 0 3 7
avg 12.285 117.225 1096.573 51.797

Domain: GraphPartitioning

50s- 100s- 200s-
100s 200s 6000s T/O

num 7 4 7 1
T/O 0 0 0 1
avg 220.249 135.215 222.965 N/A

Domain: 15Puzzle

50s- 100s- 200s-
100s 200s 6000s T/O

num 13 2 15 11
T/O 0 0 0 0
avg 326.851 1957.899 1268.053 782.938

Fig. 6. Performance comparison for 2nd ASP Competition Domains; easy instances used for training.

classes yielded overall good performance results,
other choices are possible; however, an analysis of
the strategies for subclass selection is beyond the
scope of the present paper. For the first compari-
son, we focused on planning with maximum plan
lengths of 9 and 10. Figure 8 summarizes the re-
sults of the comparison. The training set contained
151 instances, while the test set contained 81 in-
stances. Overall, dspec timed out 10 times, while
smodels timed out 49 times. The average times
of dspec are also remarkable, being mostly in the
tens of seconds. The average speedup was 259.2,
with a peak of 1253.1 for an instance for which
smodels timed out, and a peak of 544.5 for an
instance for which smodels did not time out. It
should be noted that, whenever a timeout is in-
volved, the speedup given is only an approxima-
tion, and the actual value could be substantially
higher. As a test, we have let smodels run on
some of these instances for over 60, 000 seconds

(16 hours) without getting a solution. Inspection
of the instances in which dspec performed worse
than smodels revealed that in most cases the size
of the training set (for the particular subclass)
was rather small, which affected the quality of the
domain-specific heuristic formed from it.

In the next experiment, we assessed the per-
formance improvement that can be achieved by
combining domain-specific heuristics with the use
of restarts in the solver (refer to Section 1 and
to e.g. [24,10,18]). In the following discussion, the
term smodels-restart refers to smodels exe-
cuted with restarts enabled. The comparison was
performed on the instances from the previous ex-
periment. The domain-specific heuristics used for
this experiment were the ones computed in the pre-
vious one – which were obtained without the use of
restarts. Figure 9 summarizes the results.

As one might expect, the advantage of using
the domain-specific heuristics is less evident. In
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Domain: Solitaire

50s- 100s- 200s-
100s 200s 6000s T/O

num 2 2 13 51
T/O 0 0 0 1
avg 0.150 0.070 0.080 0.212
Avg conflicts: 1372
Avg restarts: 2
Tight instances: all

Domain: HierarchicalClustering

50s- 100s- 200s-
100s 200s 6000s T/O

num 1 2 10 13
T/O 0 0 0 0
avg 0.050 0.055 0.055 0.062
Avg conflicts: 662
Avg restarts: 3
Tight instances: all

Domain: GraphPartitioning

50s- 100s- 200s-
100s 200s 6000s T/O

num 7 4 7 1
T/O 0 0 0 1
avg 31.632 15.972 12.350 N/A
Avg conflicts: 354513
Avg restarts: 15
Tight instances: none

Domain: 15Puzzle

50s- 100s- 200s-
100s 200s 6000s T/O

num 13 2 15 11
T/O 0 0 0 0
avg 1.356 4.250 2.825 2.234
Avg conflicts: 5135
Avg restarts: 7
Tight instances: all

Fig. 7. clasp on the 2nd ASP Competition Domains; easy instances used for training.

8 Mechanical Faults

50s- 100s- 200s-
100s 200s 6000s T/O

num 5 3 12 28
T/O 1 0 2 4
avg 149.633 8.756 10.553 200.491

10 Mechanical Faults

50s- 100s- 200s-
100s 200s 6000s T/O

num 2 1 9 21
T/O 1 0 1 1
avg 9.756 19.576 11.393 129.082

Fig. 8. Performance comparison for the RCS Domain; maximum plan lengths 9 and 10.

fact, restarts are known to cause performance im-
provements in various domains, and the RCS do-
main appears to be one of them. dspec timed out
in 4 cases, versus just 2 instances for smodels-

restart. Nonetheless, dspec showed an average
speedup of 7.4 over smodels-restart – almost
one order of magnitude – and a peak speedup of
32.3. The performance of dspec was better than
that of smodels-restart in 14 cases out of 21.
We believe that the fact that dspec performs over-
all well when compared to smodels-restart is
quite remarkable, because the heuristics used by

dspec in this experiment were learned from the
decisions made by dspec without restarts in the
previous experiment. Even more remarkable is the
fact that the decisions used to build the heuristics
are those corresponding to the “easy” instances,
while the comparison with smodels-restart was
performed on the hard instances.

The next experiment investigated the perfor-
mance improvements obtained by forming the
domain-specific heuristics from the decisions made
by dspec using restarts. In the following dis-
cussion, dspec-restart denotes the execution



14 M. Balduccini / Learning and Using Domain-Specific Heuristics in ASP Solvers

8 Mechanical Faults

50s- 100s- 200s-
100s 200s 6000s T/O

num 10 3 7 1
T/O 0 0 0 4
avg 20.548 23.075 55.085 29.789

10 Mechanical Faults

50s- 100s- 200s-
100s 200s 6000s T/O

num 8 3 5 1
T/O 0 0 0 0
avg 25.859 15.112 17.957 2372.903

Fig. 9. Performance comparison for the RCS Domain using restarts; maximum plan lengths 9 and 10.

of dspec with restarts enabled. Note that, be-
cause dspec is built on top of smodels, dspec-

restart and smodels-restart share the same
restarting technique.

In order to compensate for the performance in-
crease that is often typical of the use of restarts,
we increased the size of the search space. Thus, in
this experiment we used maximum plan lengths of
12 and 14. The time threshold for the partition-
ing of the set of instances was kept at 50 seconds.
This produced a rather small training set of 62 in-
stances, and a test of 170 instances. Performance,
however, was not particularly affected by the com-
paratively small size of the training set. The results
are shown in Figure 10.

The number of timeouts was quite low for both
solvers – 9 for smodels-restart and 4 for dspec-

restart. In 127 instances, dspec-restart was
faster than smodels-restart (in 9 more cases the
performance was the same). The average speedup
was 9.2, with a peak of 153.0 for an instance for
which smodels-restart timed out, and of 76.1
for an instance for which smodels-restart did
not time out. Overall, the use of domain-specific
heuristics still allowed for a more consistent perfor-
mance, in spite of the performance improvement
due to the use of restarts.

6. Related Work

Because of the central role of solver performance
and stability, a myriad different techniques for
their improvement have been studied. Here we fo-
cus on those that are closest to our approach.

A rather successful approach relies on the use of
multiple solvers. The intuition is that solvers often
exhibit excellent performance on certain classes
of problems, while they perform poorly on oth-
ers, with different solvers often performing well on
different classes of problems. Instead of using the
same solver for all the problems, one can then ana-
lyze each problem in input and use the best solver
for the task. From a technical perspective, doing
this involves the following steps: (1) selecting a set
of relevant solvers, which is called solver portfo-
lio; (2) analyzing, offline, the performance of the
solvers in the solver portfolio on representative in-
stances; (3) when a program is provided in input,
its syntactic features are analyzed, and (4) used
for the selection of the solver that is most likely to
perform well; finally, (5) the selected solver is exe-
cuted, and computes the models of the program.

A popular instance of the solver portfolio ap-
proach is the SAT solver SATzilla [20]. In SATzilla,
the analysis of the solvers is performed automati-
cally, using machine learning techniques. The anal-
ysis algorithm takes in input an objective function,
and optimizes the portfolio and associated selec-
tion function in such a way that maximizes the
objective function. In recent works, SATzilla has
also been extended with the ability to include local
search solvers in the portfolio, and by a rather so-
phisticated method for the analysis of the program
in input.

In the ASP community, a similar technique is
implemented in claspfolio [12]. claspfolio dif-
fers from SATzilla in that the portfolio consists of
different configurations of clasp, rather than pos-
sibly completely different solvers. The configura-
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8 Mechanical Faults

50s- 100s- 200s-
100s 200s 6000s T/O

num 31 17 42 4
T/O 0 0 0 1
avg 66.706 95.436 287.269 77.617

10 Mechanical Faults

50s- 100s- 200s-
100s 200s 6000s T/O

num 21 16 34 5
T/O 0 0 1 2
avg 59.421 68.687 550.360 576.790

Fig. 10. Performance comparison for the RCS Domain using restarts; maximum plan lengths 12 and 14.

tions are specified manually, and claspfolio au-
tomatically analyzes their performance on repre-
sentative problem instances. When the answer sets
of a program must be computed, the program’s
features are analyzed and used to select the most
promising configuration of clasp.

In the portfolio-based approaches the decision as
to which solver to use is made before model com-
putation starts. As noted in [30], doing this has
the potential disadvantage that, after the initial
analysis and solver selection occur, the technique
provides no way of analyzing the program later on
during the solving process, and possibly switch-
ing to a different solver. So, if the initial analysis
is incorrect, a less performing solver will be used
for the whole computation, causing the system to
perform poorly. In [30] an alternative approach is
proposed, in which multiple heuristics, rather than
multiple solvers, are available. All the heuristics
are implemented within the same QBF solver, and
the program can be analyzed and the most promis-
ing heuristic selected at each choice point. Simi-
larly to the previous approaches, an offline learn-
ing method is used to train the algorithm for the
selection of the heuristics.

The DORS framework can be viewed as being
located in between the portfolio-based approaches
and the one from [30]. Like the latter, DORS se-
lects among multiple heuristics. The main selec-
tion occurs at the beginning of the computation,
when the domain is identified and the relevant
domain-specific heuristics selected. Similarly to
[30], at each choice point DORS considers the pos-
sible decisions under the current domain-specific
heuristics and selects the most promising one. On

the other hand, unlike [30] and similarly to the

portfolio-based approaches, DORS never reconsid-

ers the initial classification of the program. An ad-

ditional feature of DORS, which differentiates it

from both the portfolio-based approaches and [30],

is that the collection of domain-specific heuristics

can be quickly, incrementally updated at the end

of each execution of the solver.

All of the above approaches (including DORS)

can be viewed as offline techniques, in the sense

that most of the learning occurs separately from

the computation of the models of the program (or

theory), typically before or after it. A very dif-

ferent approach consists in adapting the solver’s

heuristics to the problem in input at run-time by

using online learning techniques. This is the case

of the clause learning and conflict learning tech-

niques that are used in SAT and ASP solvers (see

e.g. [16,11]), and whose introduction has brought

about substantial performance improvements. The

idea behind these learning techniques is to record

information about the conflicts that are detected

during the exploration of the search space, and

to use the information to avoid descending similar

branches later. Hence, the basic heuristic is still

general-purpose, but it is tuned, during execution,

depending on the features of the problem in in-

put. On the other hand, the tuned heuristic only

applies to the current execution of the solver; in

fact, the information that has been acquired by the

learning algorithms is discarded when the solver

terminates.
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7. Conclusions

In this paper we have described a framework
that allows learning and using domain-specific
heuristics for choice-point selection, and we have
demonstrated its application to DPLL-style ASP
solvers. Our experimental comparison with smod-

els has shown that domain-specific heuristics can
give remarkable speedups, allow to find answers
that cannot otherwise be computed in a reason-
able amount of time, and make performance over-
all more consistent. In the case of the RCS domain,
a large number of the instances for which the stan-
dard solver timed out, could be solved in a mat-
ter of seconds using the domain-specific heuristics,
with an average speedup of more than 2 orders
of magnitude and peaks of more than 3. When
combined with restarts, and applied to substan-
tially harder instances, domain-specific heuristics
gave a speedup of 1 order of magnitude on aver-
age, with peaks of 2. We believe that an appealing
feature of the DORS framework is that in prin-
ciple it can be applied to any DPLL-style solver.
Hence, it is possible to extend the approach shown
here to other ASP solvers, or even to e.g. con-
straint solvers. Work is also ongoing on extending
the DORS framework to solvers based on conflict-
driven clause learning, such as clasp. As a final
note, we would like to point out that the method
used here to learn the domain-specific heuristics is
a very simple instance of policy learning. It may be
interesting to investigate how more sophisticated
techniques from reinforcement learning, but also
from machine learning and data mining, can be
applied within the DORS framework.
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Appendix: Grounding in DORS

ASP solvers typically expect in input ground
(i.e. variable-free) programs. However, because
using variables in ASP programs is convenient,
programs are first pre-processed by a grounder
(lparse and gringo in the systems considered
here), which replaces each non-ground rule by the
set of its ground instances. The grounder also
translates certain rules containing constraint liter-
als into rules with a simpler structure. The main
difficulty in implementing our technique in state-
of-the-art ASP systems (the following discussion is
based on the architecture of the lparse+smodels

system but can be extended to other ASP systems
as well) is that the grounders often introduce “un-
named atoms” during the grounding process.

An unnamed atom is an atom that does not oc-
cur in the original program, and is used internally
by the ASP system. Because of their local use, un-
named atoms are assigned identifiers that are only
valid for the current run of the system. There is
no guarantee that unnamed atoms will be assigned
the same identifiers when the system is run on a
different problem instance. Because such unnamed
atoms may be used as choice points by the solver,
one needs to ensure that unnamed atoms are given
a unique, known identifier, so that choice-point in-
formation regarding them can be used in the for-
mation of the domain-specific heuristics.

One possible solution is to modify the ASP
grounders so that unnamed atoms are given iden-
tifiers that remain valid across multiple executions
of the solver. Although conceptually simple, this
solution requires modifying each grounder that one
is interested in using. In this section we present
instead a relatively simple, indirect method that
consists of a pre-processing phase and a post-
processing phase, and does not involve modifica-
tions to the grounders.

As we mentioned earlier, in lparse and gringo,
unnamed atoms are introduced during the ground-
ing of rules containing certain constraint literals,
in order to simplify their structure. (Details on the
translation can be found in [25].) For example, the
choice rule in the program:

{

p(1). p(2). p(3).
1{a(X) : p(X)}2.

is translated by the grounder as:























{a(1), a(2), a(3)}.
← µ1.

µ1 ← 3{not a(1),not a(2),not a(3)}.
← µ0.

µ0 ← 3{a(3), a(2), a(1)}.

where µ0 and µ1 are unnamed atoms. As we men-
tioned earlier, no assumptions can be made about
which identifiers are used for the unnamed atoms.
If we were for example to add to the program a
second choice rule, or if the number of ground in-
stances of the choice rule of our example were to
change because of changes in the problem instance,
the grounding of the new program could use some
new identifiers µ2, µ3 for the above translation.

On the other hand, because of the structure of
the grounding algorithm, the relative order of the
rules belonging to the grounding of the choice rule
is independent from the changes made to the rest
of the program. Moreover, whenever multiple un-
named atoms occur in the body of a rule, their rel-
ative order is independent of changes made to the
rest of the program. We will make use of these two
properties later.

In the pre-processing phase, the user specifies
a name for each rule whose grounding may cause
the introduction of unnamed atoms. Because we
want to avoid modifications to the grounder, we
do not extend the syntax of the language to allow
specifying rule names explicitly. Instead, the name
of a rule is specified in the body of the rule itself,
using a special relation ν.2 So, choice rule 1{a(X) :
p(X)}2 can be re-written as:

1{a(X) : p(X)}2← ν(r1). (1)

Generally speaking, given a list, ~X, of all the free
variables in the rule, and some fresh constant ρ,
the name is specified by the atom ν(ρ, ~X). A rule
whose name is specified as above is called an aug-
mented rule.

To ensure that the meaning of a rule is not al-
tered by the augmentation, a definition of atom
ν(·) must also be provided (otherwise the body
of the augmented rule is never satisfied). Because
state-of-the-art grounders usually drop trivially-
true atoms from the body of the rules, we define
the new atom by a choice rule with no bounds and
suitable domain predicates for the arguments of re-

2Notice that the specification of the name of the rule in
the body is purely a technical device, and should not be
intended as conveying any semantic information.
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lation ν, such as { ν(r1) }. This choice rule will be
removed later, to avoid affecting the performance
of the solver. When processing (1), the grounder
produces:























{a(1), a(2), a(3)} ← ν(r1).
← µ1, ν(r1).
µ1 ← 3{not a(1),not a(2),not a(3)}.
← µ0, ν(r1).
µ0 ← 3{a(3), a(2), a(1)}.

Notice how the unnamed atoms co-occur with the
ν(·) atom in the body of some of the rules. Because
of the structure of the grounding algorithm, this is
the case for the grounding of any rule that intro-
duces unnamed atoms. The reader should also no-
tice that the addition of ν(·) atoms to the program
can be easily automated. A user could then spec-
ify a name for the rule using a more convenient
syntax, and have a simple pre-processor introduce
the ν(·) atoms in the program as shown above.

The post-processing phase is based on the algo-
rithm shown in Figure 11. The algorithm works as
follows. First, the ground rules are scanned for co-
occurrences of unnamed atoms and ν atoms. The
goal is to use the information provided by the ν
atoms to give a name to the unnamed atoms they
co-occur with. The association of names to un-
named atoms is stored in variable Assoc. Because
multiple unnamed atoms may be introduced by the
grounding of a single rule, an extra integer argu-
ment is added to relation ν when naming unnamed
atoms. Values for that argument are assigned on a
first-come, first-serve basis. Because, as we noted
above, the relative order of unnamed atoms in the
ground rules does not change, we are guaranteed
that the naming of unnamed atoms will be con-
sistent throughout multiple runs of the grounder
with different input programs (as long as the do-
main description remains the same). The second
for loop is for the support of rules of the form

h← not lower [atom-list ]upper ,Γ.

The grounding of these rules involves the genera-
tion of a rule of the form h ← Γ where h can be
guaranteed to have been given a name during the
execution of previous loop, and Γ may still con-
tain unnamed atoms. The names of these atoms
are obtained from the one assigned to h, using the
technique described for the previous loop. In the
third for loop, all ν atoms and their definitions are
removed from the program. Finally, the unnamed
atoms are renamed according to the associations
encoded by variable Assoc.
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function postp ( G : GroundProgram )

Assoc := ∅; G′ := G;

for each rule ρ ∈ G and unnamed atom µ in ρ

if ρ contains an atom ν( ~X) for some ~X then

i := smallest positive integer such that

∀µ′ 〈µ′, ν(i, ~X)〉 6∈ Assoc;

Assoc := Assoc ∪ {〈µ, ν(i, ~X)〉};
end if

end for

for each rule ρ ∈ G of the form h← Γ
and unnamed atom µ in Γ

if 〈h, ν(i, ~X)〉 ∈ Assoc for some i, ~X then

i′ := smallest positive integer such that

∀µ′ 〈µ′, ν(i′, ~X)〉 6∈ Assoc;

Assoc := Assoc ∪ {〈µ, ν(i′, ~X)〉};
end if

end for

for each atom of the form ν( ~X)

Remove from G′ rule {ν( ~X)} ← Γ (for some Γ);

Remove every occurrence of ν( ~X) from G′;

end for

for each 〈µ, ν(i, ~X)〉 ∈ Assoc

Replace all occurrences of µ in G′ by ν(i, ~X);
end for

return G′;

Fig. 11. Post-processing algorithm


