
A “Conservative” Approach to Extending Answer

Set Programming with Non-Herbrand Functions

Marcello Balduccini

Kodak Research Laboratories

Eastman Kodak Company

Rochester, NY 14650-2102 USA

marcello.balduccini@gmail.com

Abstract In this paper we propose an extension of Answer Set Programming

(ASP) by non-Herbrand functions, i.e. functions over non-Herbrand domains. In-

troducing support for such functions allows for an economic and natural repre-

sentation of certain kinds of knowledge that are comparatively cumbersome to

represent in ASP. The key difference between our approach and other techniques

for the support of non-Herbrand functions is that our extension is more “con-

servative” from a knowledge representation perspective. In fact, we purposefully

designed the new language so that (1) the representation of relations is fully re-

tained; (2) the representation of knowledge using non-Herbrand functions follows

in a natural way from the typical ASP strategies; (3) the semantics is an exten-

sion of the the semantics of ASP from [9], allowing for a comparatively simple

incorporation of various extensions of ASP such as weak constraints, probabilis-

tic constructs and consistency-restoring rules.

1 Introduction

In this paper we describe an extension of Answer Set Programming (ASP) [9,13,2]

called ASP{f}, and aimed at simplifying the representation of non-Herbrand functions.

In logic programming, functions are typically interpreted over the Herbrand Universe,

with each functional term f(x) mapped to its own canonical syntactical representa-

tion. That is, in most logic programming languages, the value of an expression f(x)
is f(x) itself, and thus strictly speaking f(x) = 2 is false. This type of functions,

the corresponding languages and efficient implementation of solvers is the subject of a

substantial amount of research (e.g. [7,4,14]).

When representing certain kinds of knowledge, however, it is sometimes convenient

to use functions with non-Herbrand domains (non-Herbrand functions for short), i.e.

functions that are interpreted over domains other than the Herbrand Universe. For ex-

ample, when describing a domain in which people enter and exit a room over time, it

may be convenient to represent the number of people in the room at step s by means of

a function occupancy(s) and to state the effect of a person entering the room by means

of a statement such as

occupancy(S + 1) = occupancy(S) + 1

where S is a variable ranging over the possible time steps in the evolution of the domain.

Of course, in most logic programming languages, non-Herbrand functions can still be

represented, but the corresponding encodings are not as natural and declarative as the

one above. For instance, a common approach consists in representing the functions of

interest using relations, and then characterizing the functional nature of these relations

by writing auxiliary axioms. In ASP, one would encode the above statement by (1) intro-

ducing a relation occupancy′(s, o), whose intuitive meaning is that occupancy′(s, o)
holds iff the value of occupancy(s) is o; and (2) re-writing the original statement as a

rule

occupancy′(S + 1, O + 1)← occupancy′(S,O). (1)

The characterization of the relation as representing a function would be completed by

an axiom such as

¬occupancy′(S,O′)← occupancy′(S,O), O 6= O′. (2)

which intuitively states that occupancy(s) has a unique value. The disadvantage of

this representation is that the functional nature of occupancy′(s, o) is only stated in

(2). When reading (1), one is given no indication that occupancy′(s, o) represents a

function – and, before finding statements such as (2), one can make no assumption

about the functional nature of the relations in a program when a combination of (proper)

relations and non-Herbrand functions are present. As a consequence, the declarativity

of the rules is penalized.

In comparison to other methods allowing for a direct representation of non-Herbrand

functions, we view the language proposed in this paper as an extension of ASP that is

“conservative” from a knowledge representation standpoint, and that is achieved by a

rather small modification of the original semantics. By conservative we mean that the

proposed language not only allows for a representation of non-Herbrand functions that

is natural and direct, but also retains the key properties of the underlying language of

ASP. In particular, we designed our language so that:

– The ease of representation of ASP is retained;

– It is possible to represent, and reason about, incomplete information regarding both

relations and non-Herbrand functions;

– The representation of knowledge regarding non-Herbrand functions follows for-

malization strategies similar to those used in ASP. For example, the encoding of

a default “normally f = 2” should be syntactically similar to the encoding of a

default “normally p.”

– The semantics of the new language is a modular extension of the semantics of ASP

as defined e.g. in [9].

The last requirement allows for a comparatively simple incorporation into our language

of extensions of ASP, such as weak constraints [5], probabilistic constructs [3] and con-

sistency restoring rules [1]. Although discussing the implementation of the proposed

language is outside the scope of the present paper, it is worth noting that the last re-

quirement also opens the door to the implementation of the language within most state-

of-the-art ASP solvers.

The other requirements may seem straightforward, but they are in one way or another

violated by most approaches to extending ASP with non-Herbrand functions that are

found in the literature. Some simple examples of this are presented next, while a more

thorough discussion can be found later in the paper.

The existing approaches can be categorized into two groups, depending on whether they

allow for partial functions or not. The approaches described in [10], [12], [15] and [8]

define languages that deal with total functions, whereas [6] uses partial functions.

One limitation of the approaches that require total functions is that they force one to

model lack of knowledge by means of multiple answer sets, whereas in ASP one is free

to model lack of knowledge either with multiple answer sets (such as {p}, {¬p}) or by

the lack of the corresponding literals in an answer set (e.g. answer set {q} states that

q is believed to be true, and that nothing is known about p and ¬p). Not only this in

itself involves a substantial difference in knowledge representation strategies and limits

one’s ability to represent and reason about incomplete information, but it also favors

the derivation of unsupported conclusions: literals that are not in the head of any rule,

and yet occur in an answer set. This is a drastic change of direction from ASP, in which

supportedness is a fundamental property.

The language of [6] allows for the representation of partial functions, and in this respect

allows for an approach to knowledge representation that is closer to that of ASP. That

language however does not allow strong negation. The lack of strong negation appears

to force the introduction of a special comparison operator # to express the fact that the

two functions being compared are not only different, but also both defined. A further

difference is that the semantics of the language of [6] is based on Quantified Equilibrium

Logic rather than on [9].

The rest of the paper is organized as follows. The next two sections describe the syntax

and the semantics of the proposed language. In the following section we discuss the

topic of knowledge representation with non-Herbrand functions, both in ASP{f} and

in other comparable languages from the literature. Next, we discuss the relationship

between the proposed language and ASP and use such relationship to establish some

important properties of ASP{f}. Finally, we draw conclusions and discuss future work.

2 The Syntax of ASP{f}

In this section we define the syntax of ASP{f}. Because in this paper we focus ex-

clusively on non-Herbrand functions, from now on we drop the “non-Herbrand” at-

tribute. (Allowing for Herbrand functions does not involve technical difficulties, but

would lengthen the presentation.)

The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉 whose elements are,

respectively, sets of constants, function symbols and relation symbols. A term is an

expression f(c1, . . . , cn) where f ∈ F , and ci’s are 0 or more constants. An atom is

an expression r(c1, . . . , cn), where r ∈ R, and ci’s are constants. The set of all terms

(resp., atoms) that can be formed from Σ is denoted by T (resp., A). A t-atom is an

expression of the form f = g, where f is a term and g is either a term or a constant. We

call seed t-atom a t-atom of the form f = v, where v is a constant. Any t-atom that is not

a seed t-atom is a dependent t-atom. Thus, given a signature with C = {a, b, 0, 1, 2, 3, 4}
and F = {occupancy, seats}, expressions occupancy(a) = 2 and seats(b) = 4 are

seed t-atoms, while occupancy(b) = seats(b) is a dependent t-atom.

A regular literal is an atom a or its strong negation ¬a. A t-literal is a t-atom

f = g or its strong negation ¬(f = g), which we abbreviate f 6= g. A depen-

dent t-literal is any t-literal that is not a seed t-atom. A literal is a regular literal

or a t-literal. A seed literal is a regular literal or a seed t-atom. Given a signature

with R = {room evacuated}, F = {occupancy, seats} and C = {a, b, 0, . . . , 4},
room evacuated(a), ¬room evacuated(b) and occupancy(a) = 2 are seed literals

(as well as literals); room evacuated(a) and ¬room evacuated(b) are also regular

literals; occupancy(b) 6= 1 and occupancy(b) = seats(b) are dependent t-literals, but

they are not regular or seed literals.

A rule r is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (3)

where h is a seed literal and li’s are literals. Similarly to ASP, the infor-

mal reading of r is that a rational agent who believes l1, . . . , lm and has

no reason to believe lm+1, . . . , ln must believe h. Given a signature with

R = {room evacuated, door stuck, room occupied, room maybe occupied},F =
{occupancy}, C = {0}, the following is an example of ASP{f} rules encoding knowl-

edge about the occupancy of a room:

r1 : occupancy = 0← room evacuated, not door stuck.

r2 : room occupied← occupancy 6= 0.
r3 : room maybe occupied← not occupancy = 0.

Intuitively, rule r1 states that the occupancy of the room is 0 if the room has been

evacuated and there is no reason to believe that the door is stuck. Rule r2 says that

the room is occupied if its occupancy is different from 0. On the other hand, r3 aims

at drawing a weaker conclusion, stating that the room may be occupied if there is no

explicit knowledge (i.e. reason to believe) that its occupancy is 0.

Given rule r from (3), head(r) denotes h; body(r) denotes {l1, . . . , not ln}; pos(r)
denotes {l1, . . . , lm}; neg(r) denotes {lm+1, . . . , ln}.

A constraint is a special type of rule with an empty head, informally meaning that the

condition described by the body of the rule must never be satisfied. A constraint is

considered a shorthand of:

⊥ ← l1, . . . , lm, not lm+1, . . . , not ln, not ⊥

where ⊥ is a fresh atom. Thus, the constraint

← room occupied, door stuck.

states that it is impossible for the room to be occupied when the door is stuck.

A program is a pair Π = 〈Σ,P 〉, where Σ is a signature and P is a set of rules.

Whenever possible, in this paper the signature is implicitly defined from the rules of

Π , and Π is identified with its set of rules. In that case, the signature is denoted by

Σ(Π) and its elements by C(Π), F(Π) and R(Π). A rule r is positive if neg(r) = ∅.
A program Π is positive if every r ∈ Π is positive. A program Π is also t-literal free

if no t-literals occur in the rules of Π .

For practical purposes, it is often convenient to use variables in programs. In ASP{f},
variables can be used in place of constants and terms. The grounding of a rule r is the

set of all the syntactically valid rules obtained by replacing every variable of r with

an element of C ∪ T . The grounding of a program Π is the set of the groundings of

the rules of Π . A syntactic element of the language is ground if it is variable-free and

non-ground otherwise. Thus, the fact that a room is unoccupied at a any step S in the

evolution of a domain whenever the room is not accessible can be expressed by the

non-ground rule:

occupancy(S) = 0← not accessible(S).

Given possible time steps {0, 1, 2}, the grounding of the rule is:

occupancy(0) = 0← not accessible(0).
occupancy(1) = 0← not accessible(1).
occupancy(2) = 0← not accessible(2).

3 Semantics of ASP{f}

The semantics of a non-ground program is defined to coincide with the semantics of its

grounding. The semantics of ground ASP{f} programs is defined below. In the rest of

this section, we consider only ground terms, literals, rules and programs and thus omit

the word “ground.”

A set S of seed literals is consistent if (1) for every atom a ∈ A, {a,¬a} 6⊆ S; (2) for

every term t ∈ T and v1, v2 ∈ C such that v1 6= v2, {t = v1, t = v2} 6⊆ S. Hence,

S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are consistent, while {p,¬p, f = 3}
and {q, f = 3, f = 2} are not. Incidentally, {p,¬q, f = g, g = 2} is not a set of seed

literals, because f = g is not a seed literal.

The value of a term t w.r.t. a consistent set S of seed literals (denoted by valS(t)) is v

iff t = v ∈ S. If, for every v ∈ C, t = v 6∈ S, the value of t w.r.t. S is undefined. The

value of a constant v ∈ C w.r.t. S (valS(v)) is v itself. For example given S1 and S2 as

above, valS2
(f) is 3 and valS2

(g) is 2, whereas valS1
(g) is undefined. Given S1 and a

signature with C = {0, 1}, valS1
(1) = 1.

A seed literal l is satisfied by a consistent set S of seed literals iff l ∈ S. A dependent

t-literal f = g (resp., f 6= g) is satisfied by S iff both valS(f) and valS(g) are defined,

and valS(f) is equal to valS(g) (resp., valS(f) is different from valS(g)). Thus, seed

literals q and f = 3 are satisfied by S2; f 6= g is also satisfied by S2 because valS2
(f)

and valS2
(g) are defined, and valS2

(f) is different from valS2
(g). Conversely, f = g

is not satisfied, because valS2
(f) is different from valS2

(g). The t-literal f 6= h is also

not satisfied by S2, because valS2
(h) is undefined. When a literal l is satisfied (resp.,

not satisfied) by S, we write S |= l (resp., S 6|= l).

An extended literal is a literal l or an expression of the form not l. An extended literal

not l is satisfied by a consistent set S of seed literals (S |= not l) if S 6|= l. Similarly,

S 6|= not l if S |= l. Considering set S2 again, extended literal not f = h is satisfied by

S2, because f = h is not satisfied by S2.

Finally, a set E of extended literals is satisfied by a consistent set S of seed literals

(S |= E) if S |= e for every e ∈ E.

We begin by defining the semantics of ASP{f} programs for positive programs.

A set S of seed literals is closed under positive rule r if S |= head(r) whenever S |=
pos(r). Hence, set S2 described earlier is closed under f = 3 ← g 6= 1 and (trivially)

under f = 2 ← r, but it is not closed under p ← f = 3, because S2 |= f = 3 but

S2 6|= p. S is closed under Π if it is closed under every rule r ∈ Π .

Finally, a set S of seed literals is an answer set of a positive program Π if it is consistent

and closed under Π , and is minimal (w.r.t. set-theoretic inclusion) among the sets of

seed literals that satisfy such conditions. Thus, the program:

p← f = 2.
f = 2.
q ← q.

has an answer set {f = 2, p}. The set {f = 2} is not closed under the first rule of the

program, and therefore is not an answer set. The set {f = 2, p, q} is also not an answer

set, because it is not minimal (it is a proper superset of another answer set). Notice that

positive programs may have no answer set. For example, the program

f = 3← not p.

f = 2← not q.

has no answer set. Programs that have answer sets (resp., no answer sets) are called

consistent (resp., inconsistent).

Positive programs enjoy the following property:

Proposition 1. Every consistent positive program Π has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} programs.

The reduct of a program Π w.r.t. a consistent set S of seed literals is the set ΠS consist-

ing of a rule head(r)← pos(r) (the reduct of r w.r.t. S) for each rule r ∈ Π for which

S |= body(r) \ pos(r). From Proposition 1 it follows that the reduct w.r.t. a given set

has a unique answer set.

Example 1. Consider a set of seed literals S3 = {g = 3, f = 2, p, q}, and program Π1:

r1 : p← f = 2, not g = 1, not h = 0.
r2 : q ← p, not g 6= 2.
r3 : g = 3.
r4 : f = 2.

and let us compute its reduct. For r1, first we have to check if S3 |= body(r1)\pos(r1),
that is if S3 |= not g = 1, not h = 0. Extended literal not g = 1 is satisfied by S3 only

if S3 6|= g = 1. Because g = 1 is a seed literal, it is satisfied by S3 if g = 1 ∈ S3.

Since g = 1 6∈ S3, we conclude that S3 6|= g = 1 and thus not g = 1 is satisfied by S3.

In a similar way, we conclude that S3 |= not h = 0. Hence, S3 |= body(r1) \ pos(r1).
Therefore, the reduct of r1 is p ← f = 2. For the reduct of r2, notice that not g 6= 2
is not satisfied by S3. In fact, S3 |= not g 6= 2 only if S3 6|= g 6= 2. However, it is

not difficult to show that S3 |= g 6= 2: in fact, valS3
(g) is defined and valS3

(g) 6= 2.

Therefore, not g 6= 2 is not satisfied by S3, and thus the reduct of Π1 contains no rule

for r2. The reducts of r3 and r4 are the rules themselves. Summing up, ΠS3

1 is:

r′1 : p← f = 2.
r′3 : g = 3.
r′4 : f = 2.

Finally, a consistent set S of seed literals is an answer set of program Π if S is the

answer set of ΠS .

Example 2. By applying the definitions given earlier, it is not difficult to show that the

answer set of ΠS3

1 is {f = 2, g = 3, p} = S3. Hence, S3 is an answer set of ΠS3

1 .

Consider instead S4 = S3 ∪{h = 1}. Clearly ΠS4

1 = ΠS3

1 . From the uniqueness of the

answer sets of positive programs, it follows immediately that S4 is not the answer set

of ΠS4

1 . Therefore, S4 is not an answer set of Π1.

Most properties of ASP programs are also enjoyed by ASP{f}, such as:

Proposition 2. For every ASP{f} program Π and set of constraints C formed from

Σ(Π), S is an answer set of Π ∪C iff S is an answer set of Π that does not satisfy the

body of any constraint from C.

4 Knowledge Representation with Non-Herbrand Functions

In this section we demonstrate the use of ASP{f} for knowledge representation, and

compare the corresponding formalizations with those from the existing literature. We

start our discussion by addressing the encoding of defaults.

Consider the statements: (1) the value of f(x) is a unless otherwise specified; (2) the

value of f(x) is b if p(x) (this example is from [10]; for simplicity of presentation

we use a constant as the argument of function f instead of a variable as in [10], but

our argument does not change even in the more general case). These statements can be

encoded in ASP{f} as follows:

P1 =

{

r1 : f(x) = a← not f(x) 6= a.

r2 : f(x) = b← p(x).

Rule r1 encodes the default, and r2 encodes the exception. It is worth stressing that the

informal reading of r1, according to the description given earlier in this paper, is “if

there is no reason to believe that f(x) is different from a, then f(x) must be equal to

a”, which is essentially identical to the original problem statement. We argue that this

representation of the default is, at least by ASP standards, natural and direct. Moreover,

it is not difficult to see that the formalization follows a strategy similar to that of the

formalization of defaults in ASP. Consider the statement “q(x) holds unless otherwise

specified”. A common way of encoding it in ASP is with a rule q(x)← not ¬q(x). Not

only the informal reading of this rule (“if there is no reason to believe that q(x) is false,

then it must be true”) is close to the informal reading of r1, but the rules themselves

have a similar structure as well. On the other hand, this is not the case of the language

of weight constraint programs with evaluable functions [15], where a substantially dif-

ferent representation strategy is adopted, in which the default is encoded as:

f(x) = a← [f(x) 6= a : 1]0.

In this case there is arguably little similarity between the body of this rule and the body

of the default for q(x), both syntactically and conceptually.

In the language of IF-programs [10], the default for f(x) has an encoding rather similar

to that of r1:

f(x) = a← ¬(f(x) 6= a)

Note that, in the language of IF-programs, ¬ has a meaning similar to that of not here.

Where the language deviates from ASP is in the fact that in the language of IF-programs

the above rule is equivalent to:

f(x) = a ∨ f(x) 6= a.

The equivalence of the two encodings is somewhat problematic from the point of view

of the language requirements that we are seeking to satisfy in this paper. In fact, in

ASP the epistemic disjunction operator ∨ denotes a non-deterministic choice between

two alternatives: a statement p ∨ q in ASP means that p and q are equally acceptable

alternatives. In the language of IF-programs, instead, the disjunction operator appears to

express a preference for the left-hand-side expression. In this sense, the representation

of disjunctive knowledge in ASP and in [10] follows two very different strategies. (It

is not difficult to show that ASP{f} can be naturally extended to allow for disjunction

with a semantics following closely that of ASP).

Another language that allows for a direct representation of functions is that of CLING-

CON [8]. However, the representation of defaults involving functions in CLINGCON may

yield rather unintended results if one follows the typical ASP knowledge representation

strategies.

Consider a modification of the default discussed earlier in which the value of f(x) is

1 by default (CLINGCON only supports functions with numerical values), and let us

assume that f(x) ranges over the set {0, 1}. One might be tempted to encode it in the

language of CLINGCON as:

$domain(0..1).
f(x) $== 1← not f(x) $!= 1.

where the first statement specifies the domain of the functions and the second statement

formalizes the default, with prefix $ denoting equality and inequality of functions. As

one would expect, this program has an answer set, {f(x) = 1}, in which f(x) has

its default value of 1. However, the program also has a second, unintended answer

set, {f(x) = 0}, in which f(x) is assigned the non-default value of 0. Clearly, in

CLINGCON defaults cannot be represented using the typical ASP techniques.

As mentioned in the Introduction, a difference between languages with partial functions

and languages with total functions is the way incomplete or uncertain information can

be encoded. Suppose we know that function f(x) ranges over {a, b}, but we do not

know its value. In ASP, this could be encoded by the program:

f ′(x, a)← not f ′(x, b).
f ′(x, b)← not f ′(x, a).
← f ′(x, a), f ′(x, b).

(4)

The first two rules informally say that we know that the value of f(x) is either a or b,

but we do not know which one it is; the last rule characterizes f ′(x, v) as a function. It

is not difficult to show that this program has two answer sets, {f ′(x, a)} and {f ′(x, b)},
each corresponding to one possible assignment of value to f(x). Alternatively, the same

scenario can also be encoded in ASP by the program:

← f ′(x, a), f ′(x, b).
← f ′(x, V), V 6= a, V 6= b.

(5)

where the first constraint is as before, and the second constraint restricts the domain of

f(x) to {a, b}. This program has a unique, empty answer set. The fact that no literal of

the form f ′(x, v) occurs in the answer set implies that the value of f(x) is not known.

Similarly, in languages that support partial functions, such as ASP{f} and [6], both

methods can be applied for the representation of incomplete information about func-

tions. For instance, in ASP{f} an equivalent of (4) is:

f(x) = a← not f(x) = b.

f(x) = b← not f(x) = a.
(6)

whose answer sets, along the lines of those of the ASP formalization, are {f(x) = a}
and {f(x) = b}. A formalization equivalent to (5) is an empty program (with a suitable

signature), which has an empty answer set. According to the semantics defined earlier,

an empty set entails that statements such as f(x) = a and f(x) 6= a are neither true nor

false, implying that the value of f(x) is unknown.

On the other hand, in languages that only allow for total functions, such as [10], [12],

[15] and [8], the incompleteness of information about functions can only be represented

by means of multiple answer sets. For example, in the language of [12] an empty pro-

gram together with a specification of domain {a, b} for f(x) yields two answer sets,

{f(x) = a}, {f(x) = b}. Because the functions specified by the formalizations are

required to be total, there is no way to describe uncertainty about f(x) by means of

answer sets where the value of f(x) unspecified.

Extending a common ASP methodology, the technique used in (6) to formalize the

choice between a and b can also be easily extended to represent functions whose do-

mains have more than two elements and to incorporate default values. Consider the

statements (adapted from [10]): (1) the value f(X) is a if p(X); (2) otherwise, the value

of f(X) is arbitrary. Let the domain of variable X be given by a relation dom(X), and

let the possible values of f(X) be encoded by a relation val(V). A possible ASP{f}
encoding of these statements is:

r1 : f(X) = a← p(X), dom(X).

r2 : f(X) = V ← dom(X), val(V), not p(X), not f(X) 6= V.

Rule r1 encodes the first statement. Rule r2 formalizes the arbitrary selection of values

for f(X) in the default case. It is important to notice that, although r2 follows a strategy

of formalization of knowledge that is similar to that of ASP, the ASP{f} encoding is

more compact than the corresponding ASP one. In fact, the ASP encoding requires the

introduction of an extra rule formalizing the fact that f(x) has a unique value:

r′1 : f ′(X) = a← p(X), dom(X).

r′2 : f ′(X,V)← dom(X), val(V), not p(X), not ¬f ′(X,V).

r′3 : ¬f ′(X,V ′)← val(V), val(V ′), V 6= V ′, f ′(X,V).

Not only having to write r′3 is rather inconvenient, but this kind of rule may also have

quite a negative impact on the performance of the ASP solvers used to compute the

answer sets of the program. In fact, it is not difficult to show that the grounding of r′3
grows proportionally to the square of the size of the domain of f(x). For functions with

large domains, this growth can cause performance problems (and cause the grounding

of rules like r′3 to become substantially larger than the grounding of the rest of the

program). On the other hand, the grounding of the corresponding ASP{f} program does

not suffer from such a growth, and a solver could in principle take advantage of that and

compute the program’s answer sets substantially faster.

A similar use of defaults is typically associated, in ASP, with the representation of

dynamic domains. In this case, defaults are a key tool for the encoding of the law of

inertia. Let us show how dynamic domains involving functions can be represented in

ASP{f}. Consider a domain including a button bi, which increments a counter c, and a

button br, which resets it. At each time step, the agent operating the buttons may press

either button, or none. A possible ASP{f} encoding of this domain is:

r1 : val(c, S + 1) = 0← pressed(br, S).

r2 : val(c, S + 1) = N + 1← pressed(bi, S), val(c, S) = N.

r3 : val(c, S + 1) = N ← val(c, S) = N, not val(c, S + 1) 6= N.

Rules r1 and r2 are a straightforward encoding of the effect of pressing either button

(variable S denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia

for the value of the counter, and states that the value of c does not change unless it is

forced to. For simplicity of presentation, it is instantiated for a particular function, but

could be as easily written so that it applies to arbitrary functions from the domain. Rule

r3 follows the same encoding strategy used for relations in ASP, where the inertia law

for a relational fluent p typically takes the form:

p(S + 1)← p(S), not ¬p(S).

¬p(S + 1)← p(S), not p(S).
(7)

The only difference is in the fact that (7) uses two rules because p and ¬p are treated

separately due to syntactic restrictions of ASP. Incidentally, it is not difficult to see that

(7) is also a valid encoding of inertia for relational fluents in ASP{f}.

Let us now consider a typical ASP encoding for the above domain:

r′1 : val(c, S + 1, 0)← pressed(br, S).

r′2 : val(c, S + 1, N + 1)← pressed(bi, S), val(c, S,N).

r′3(a) : val(c, S + 1, N)← val(c, S,N), not ¬val(c, S + 1, N).

r′3(b) : ¬val(c, S,N ′)← val(c, S,N), N 6= N ′.

Rules r′1, r
′
2 are similar to their ASP{f} counterparts. The only difference is that, taken

out of context, r′1 and r′2 do not provide any indication that val is a function, and that

as a consequence only one of {val(c, s, 0), val(c, s, 1), . . .} can hold at any step s. As

mentioned earlier, this difference is rather important from a knowledge representation

perspective, as it reduces the declarativity of the rules. Rule r′3(a) encodes the law

of inertia. Because this encoding represents functions by means of relations, the rule

depends on a suitable definition of the axioms of the uniqueness of value for val, for-

malized by r′3(b). As we discussed in the previous example, the grounding of r′3(b) can

grow quite substantially – in fact, in practice, it can grow even more dramatically than

in the previous example, because of the extra argument for the time step. The ASP{f}
representation is thus not only more natural, but also potentially more efficient.

Coming back to the comparison between languages that allow partial functions and

languages that do not allow them, another important distinguishing feature is the fact

that in the languages with partial functions all conclusions are supported. A conclusion,

i.e. a literal l from an answer set A of a program Π , is supported if it is in the head

of some rule r whose reduct with respect to A has its body satisfied by A. In ASP, as

well as in ASP{f} and [6], all conclusions enjoy this property. Both from a practical

perspective and from the standpoint of knowledge representation, this feature has the

advantage that a programmer can look at a program and rather easily understand which

literals may be in the program’s answer sets, and which ones cannot be in any answer

set. Similarly, it is not difficult, given a literal from an answer set, to identify which

rules may have caused its derivation. In languages with total functions, on the other

hand, conclusions are not required to be supported. To highlight the ramifications of

this difference from a knowledge representation perspective, let us consider the graph

coloring problem (see e.g. [6,12]). In this problem, one must assign a color to each

node of a graph so that no two adjacent nodes have the same color. A possible ASP{f}
formalization is:

color(X) = V ← node(X), available color(V), not color(X) 6= V.

← arc(X,Y), color(X) = color(Y).

The first rule states that each node can be assigned an arbitrary color, thus making color

a total function. The second rule says that two adjacent nodes are not allowed to have

the same color. In the language of [12], the graph coloring problem admits a solution

that is even more compact:

← arc(X,Y), color(X) = color(Y). (8)

The reason why this is a solution to the graph coloring problem is because in [12] func-

tions are total. Therefore, there is no need for an extra statement that forces color(X)
be defined. But at the same time, conclusions such as color(n1) = red will occur in the

answer sets of (8) without occurring in the head of any rule. In this sense, (8) does not

follow the typical knowledge representation strategies of ASP. In fact, it follows a quite

opposite representation strategy: consider the ASP program consisting of a definition R

of relation arc and of:

← arc(X,Y), color(X,C), color(Y,C). (9)

Because relation color does not occur in the head of any rule, one can immediately

conclude that the constraint is never triggered and that the program has thus a unique

answer set consisting only of the definition of relation arc. Therefore, the color of any

node X is unknown. That is, although program R ∪ (9) is syntactically very similar to

R ∪ (8), their meanings are very different!

Finally, as pointed out in [6], in languages that allow for the representation of partial

functions a statement such as “Louis XIV is not the king of France” may be intended

in either one of two ways: (1) “whether France has a king or not, definitely Louis XIV

is not the king of France”, and (2) “France has a king, and it is not Louis XIV.” The

difference between the two readings is that in the second case the statement is true only

if France is known to have a king (i.e. if the function is defined), whereas in the first

case the statement is true even if we have no knowledge about France having a king. In

[6], the apartness operator # is introduced, which informally states that the functions

being compared (1) are defined and (2) have different values. So, the first reading of the

sentence is encoded as not king(france) = louisXIV , whereas the second reading is

encoded as king(france) # louisXIV . In ASP{f}, on the other hand, one can achieve

the same result by combining default negation and strong negation, as is normally done

in ASP. More precisely, the first reading can be expressed in ASP{f} by the statement:

not king(france) = louisXIV (10)

which, as explained earlier, has the informal reading of “there is no reason to believe

that LouisXIV is the king of France”. The second reading can be encoded as

king(france) 6= louisXIV. (11)

which informally states “the king of France is different from Louis XIV” (recall that

in ASP{f} king(france) 6= louisXIV is an abbreviation of ¬(king(france) =
louisXIV)). According to the semantics of ASP{f} defined earlier, (10) is satis-

fied by a consistent set S of seed literals if king(france) = louisXIV is not sat-

isfied by S. Because S |= king(france) = louisXIV iff valS(king(france))
is defined and valS(king(france)) is louisXIV , it follows that (10) is satisfied if

either valS(king(france)) is undefined, or valS(king(france)) is different from

louisXIV . On the other hand, (11) is satisfied by S iff valS(king(france)) is defined

and different from louisXIV . It is worth stressing that king(france) 6= louisXIV

is just a syntactic variant of ¬(king(france) = louisXIV), which implies that, in

ASP{f} as well, the use of default and strong negation allows avoiding the introduction

of an ad-hoc comparison operator.

5 Relationship with ASP

In this section we establish some useful formal relationships between ASP{f} and ASP,

and use them to derive some important properties of ASP{f}.

To distinguish between the definitions given above in the context of ASP{f} and the cor-

responding definitions in the context of ASP, in this section we prefix ASP{f}-related

terms with ASP{f}. So, if literal l is satisfied by a consistent set S of seed literals, we

say that it is ASP{f}-satisfied. Similarly we say that S is ASP{f}-closed under a rule

r. When we refer to the traditional ASP definitions, we use prefix ASP and say for ex-

ample ASP-satisfied and ASP-closed. We introduce a similar distinction in the notation,

and use symbols |=ASP{f} and |=ASP respectively.

For t-literal free programs, it is not difficult to prove that the following proposition

holds:

Proposition 3. For every t-literal free program Π , A is an answer set of Π under the

ASP{f} semantics iff A is an answer set of Π under the ASP semantics.

Because of this result, when in this section we use the term “answer set”, we leave the

semantics implicitly defined by whether the corresponding program is t-literal free or

not. With similar reasoning, we do not explicitly refer to a semantics when referring to

the reduct of a program.

Let us now consider arbitrary ASP{f} programs. An ASP{f} extended literal e can be

mapped into an ASP extended literal (defined, as usual in ASP, as a literal l or the

expression not l) by replacing every occurrence of a t-literal f = x (resp., f 6= x) in

e by eq(f, x) (resp., ¬eq(f, x)), where eq is a fresh relation symbol. We denote the

ASP-mapping of e by α(e). The notion of ASP-mapping is extended to sets of extended

literals (α({e1, . . . , ek}), rules (α(r)), and programs (α(Π)) in a straightforward way.

The inverse of the α mapping is denoted by α−1.

Now, let Π be an ASP{f} program. We define the ASP-completion of Π to be γ(Π) =
α(Π) ∪ σr(Π) where σr(Π) is formed as follows:

– For every term t from Σ(Π) and v, v′ ∈ C(Π) such that v 6= v′, σr(Π) contains a

rule ¬eq(t, v′)← eq(t, v).
– For every pair of terms f , g from Σ(Π), every v, vf , vg ∈ C(Π) such that vf 6= vg,

σr(Π) contains the rules:

eq(f, g)← eq(f, v), eq(g, v). ¬eq(f, g)← eq(f, vf), eq(g, vg).

The next definition will be used later to link answer sets of ASP{f} programs and of

their ASP-completions. Let Σ = 〈C,F ,R〉 S be a set of seed literals from Σ. The

ASP-completion of S (c(S)) is:

c(S) = α(S) ∪
{¬eq(t, v′) | t = v ∈ S ∧ v ∈ δ(t) ∧ v′ ∈ δ(t) ∧ v 6= v′} ∪
{eq(f, g) | f = v ∈ S ∧ v ∈ δ(f) ∧ g = v ∈ S ∧ v ∈ δ(g)} ∪
{¬eq(f, g) | f = vf ∈ S ∧ vf ∈ δ(f) ∧ g = vg ∈ S ∧ vg ∈ δ(g) ∧ vf 6= vg}

Intuitively, the ASP-completion of a set S of seed literals adds to S the dependent t-

literals that are ASP{f}-entailed by S.

We are now ready to state the main results of this section on the relationship between

ASP and ASP{f}.

Proposition 4. For every ASP{f} program Π and every consistent set A of seed liter-

als, α(ΠA) = α(Π)c(A).

Proposition 5. For every ASP{f} program Π: (1) if A is an answer set of Π then c(A)
is an answer set of γ(Π); (2) if B is an answer set of γ(Π) then there exists A such

that B = c(A) and A is an answer set of Π .

From Propositions 4 and 5, the following properties follow:

Proposition 6. The task of deciding whether a consistent set of seed literals is an an-

swer set of an ASP{f} program is coNP-complete. The task of finding an answer set of

an ASP{f} program is ΣP
2 -complete.

The same propositions also allow to extend the Splitting Set Theorem [11] to ASP{f}.
Let us call splitting set for an ASP{f} program Π a set U of seed literals such that, for

every rule r ∈ Π , if head(r) ∩ U 6= ∅, then body(r) ⊆ U . The set of rules of r ∈ Π

such that body(r) ⊆ U is denoted by bU (Π). The partial evaluation, eU (Π,X) of Π

with respect to U and set of seed literals X is the set containing, for every r ∈ Π such

that pos(r) ∩ U ⊆ X and neg(r) ∩ U is disjoint from X , a rule r′, where head(r′) =
head(r), pos(r′) = pos(r) \U and neg(r′) = neg(r) \U . We say that a solution to Π

with respect to U is a pair 〈X,Y 〉 of sets of seed literals such that (1) X is an answer

set for bU (Π); (2) Y is an answer set for eU (Π \ bU (Π),X); (3) X ∪ Y is consistent.

Proposition 7. A set A of seed literals is an answer set of ASP{f} program Π if and

only if A = X ∪ Y for some solution 〈X,Y 〉 to Π with respect to U .

6 Conclusions and Future Work

In this paper we have defined the syntax and semantics of an extension of ASP that

supports the direct use of non-Herbrand functions. As we have discussed throughout

the paper, the ability to represent directly non-Herbrand functions has important advan-

tages from both a knowledge-representation perspective, a practical perspective, and

the perspective of solver performance. Compared to other approaches for the introduc-

tion of non-Herbrand functions in ASP, our language is more “conservative”, in that it

is intentionally defined so as to allow for the use of the same knowledge representa-

tion strategies of ASP. Because the definition of the semantics of ASP{f} is based on

the one from [9], it allows for a comparatively simple incorporation in the new lan-

guage of certain extensions of ASP such as weak constraints, probabilistic constructs

and consistency-restoring rules. The simplicity of the modification of the original se-

mantics makes it also relatively straightforward to extend properties of ASP programs

to ASP{f} programs.

Although the results from the previous section could in principle be used to implement

an ASP{f} solver, the simplicity of our modification to the semantics from [9] makes it

possible to extend state-of-the-art ASP solvers to provide direct support for ASP{f}. We

have implemented an ASP{f} solver using this strategy and compared its performance

to the performance obtained with the translations to normal logic programs described

in [6] and [10]. In our preliminary experimental results, the performance of our ASP{f}
solver is consistently more than an order of magnitude better than the performance

obtained with the translation to normal logic programs.

A topic that is not addressed in this paper, is that of expressions with nested non-

Herbrand functions. For example, in the language of [6] it is possible to write an expres-

sion such as mother(father(mother(X))), and in the language of [12] one can write

a rule such as reached(hc(X)) ← reached(X). Although these expressions can be

encoded in ASP{f} using additional variables (e.g. reached(Y)← reached(X), Y =
hc(X)), we believe that a more direct support for expressions with nested non-Herbrand

functions in ASP{f} could not only allow for more compact rules, but could also be ef-

fectively exploited for an efficient implementation of the ASP{f} solver.

Acknowledgments. We would like to thank Michael Gelfond, Daniela Inclezan and

Stefan Woltran for useful feedback and suggestions.

References

1. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Journal of Theory and

Practice of Logic Programming (TPLP) 3(4–5), 425–461 (Jul 2003)

2. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press (Jan 2003)

3. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Journal of

Theory and Practice of Logic Programming (TPLP) 9(1), 57–144 (2009)

4. Baselice, S., Bonatti, P.A.: A Decidable Subclass of Finitary Programs. Journal of Theory

and Practice of Logic Programming (TPLP) 10(4–6), 481–496 (2010)

5. Buccafurri, F., Leone, N., Rullo, P.: Adding Weak Constraints to Disjunctive Datalog. In:

Proceedings of the 1997 Joint Conference on Declarative Programming APPIA-GULP-

PRODE’97 (1997)

6. Cabalar, P.: Functional Answer Set Programming. Journal of Theory and Practice of Logic

Programming (TPLP) 11, 203–234 (2011)

7. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing ASP by Functions: Decidable

Classes and Implementation Techniques. In: Proceedings of the Twenty-Fourth Conference

on Artificial Intelligence. pp. 1666–1670 (2010)

8. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: 25th International

Conference on Logic Programming (ICLP09). vol. 5649 (2009)

9. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing 9, 365–385 (1991)

10. Lifschitz, V.: Logic Programs with Intensional Functions (Preliminary Report). In: ICLP11

Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP11) (Jul

2011)

11. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International

Conference on Logic Programming (ICLP94). pp. 23–38 (1994)

12. Lin, F., Wang, Y.: Answer Set Programming with Functions. In: Proceedings of the Interna-

tional Conference on Principles of Knowledge Representation and Reasoning (KR2008). pp.

454–465 (2008)

13. Marek, V.W., Truszczynski, M.: The Logic Programming Paradigm: a 25-Year Perspec-

tive, chap. Stable Models and an Alternative Logic Programming Paradigm, pp. 375–398.

Springer Verlag, Berlin (1999)

14. Syrjanen, T.: Omega-Restricted Logic Programs. In: Eiter, T., Faber, W., Truszczynski, M.

(eds.) 6th International Conference on Logic Programming and Nonmonotonic Reason-

ing (LPNMR01). Lecture Notes in Artificial Intelligence (LNCS), vol. 2173, pp. 267–279.

Springer Verlag, Berlin (2001)

15. Wang, Y., You, J.H., Yuan, L.Y., Zhang, M.: Weight Constraint Programs with Functions. In:

Erdem, E., Lin, F., Schaub, T. (eds.) 10th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR09). Lecture Notes in Artificial Intelligence (LNCS),

vol. 5753, pp. 329–341. Springer Verlag, Berlin (Sep 2009)

