Experiments in Answer Sets Planning
(extended abstract)

M. Balduccini, G. Brignoli, G.A. Lanzarone, F. Magni and A. Provetti *

Centro di ricerca “Informatica Interattiva” - Universita degli Studi dell’Insubria a Varese, Italy.
Dipartimento di Scienze dell’Informazione - Universita degli Studi di Milano, Italy.

Abstract The study of formal nonmonotonic reasoning has been motivated to a large
degree by the need to solve the frame problem and other problems related to represent-
ing actions. New efficient implementations of nonmonotonic reasoning, such as SMODELS
and DLV, can be used to solve many computational problems that involve actions, in-
cluding plan generation. SMODELS and its competitors are essential to implement a new
approach to knowledge representation and reasoning: to compute solutions to a problem
by computing the stable models (answer sets) of the theory that represents it. Marek
and Truszczyriski call this paradigm Stable model programming. We are trying to as-
sess the viability of stable logic programming for agent specification and planning in
realistic scenarios. To do so, we present an encoding of plan generation within the lines
of Lifschitz’s Answer set planning and evaluate its performance in the simple scenario
of Blocks world. Several optimization techniques stemming from mainstream as well as
satisfiability planning are added to our planner, and their impact is discussed.

1 Introduction

Stable Logic Programming (SLP) is an emergent, alternative style of logic pro-
gramming: each solution to a problem is represented by an answer set of a
function—free logic program® encoding the problem itself. Several implementations
now exist for stable logic programming, and their performance is rapidly improv-
ing; among them are SMODELS [Sim97,NieSim98]|, DERES [ChoMarTru96], SLG
[CheWar96], pLv [ELMPS97|, and CCALC [McCTur97].

Recently, Lifschitz has introduced [Lif99] the term Answer set planning to
describe which axioms are needed to characterize correct plans and to discuss
the applicability of stable model (answer set) computation interpreters to plan
generation. Two features of Answer set planning are particularly attractive.

First, the language it uses is very apt to capture planning instances where con-
ventional STRIPS fall short. In fact, Answer set planning allow the user to specify
incomplete knowledge about the initial situation, actions with conditional and
indirect effects, nondeterministic actions, and interaction between concurrently
executed actions.

Second, even tough Answer set planning specifications, like those in this pa-
per, are completely declarative in nature, SMODELS is by now efficient enough
to interpret them, i.e., generate valid plans, with times at least comparable to
those of on-purpose planners, on which research and optimization has been active

* Corresponding author, ph: +39-02-55006.290, e-mail: provetti@dsi.unims.it.
! Or, via a syntactic transformation, a restricted default theory or even a DATALOG™ program.

for years. For instance, Dimopoulos et al. [DNK97] report that on the logistics
domains from Kautz and Selman [KauSel96] (which is about package delivery by
using trucks and planes) their SMODELS solution took 18 seconds vis-a-vis with
more than 6 hours for GRAPHPLAN.

We would like to develop on Lifschitz’s proposal in several directions which are
related to, and bring together, our current research in nonmonotonic reasoning
and autonomous agents.

Research in Milan [Cos95,BCP99,CosPro99|, has so far contributed to stable
logic programming by analyzing, in particular, the dependence of stable models
existence on the syntax of the program. This brought out [Cos95] several basic
results that extend the usual sufficent conditions of [Dun92,Fag94], none of which
indeed applies to Answer set planning, as well as suggesting a new stable model
computation algorithm, proposed in [BCP99].

Meanwhile, research in Varese has discussed the prospect of applying logic
programming to the complex tasks of designing and animating an autonomous
agent capable of reaction, planning and above all learning an unknown outside
environment. A PROLOG program simulating a learning agent and its environ-
ment was proposed in [BalLan97]. Now, a physical scenario is being considered,
with the goal of implementing a controller for a small mobile robot equipped
with sensors and an arm. For a principled knowledge representation approach to
succeed there, we need a viable computational mechanism, and this paper is the
first of a series of experiments towards assessing stable models computation as a
valid choice.

This article discusses a set of experiments on the problem of plan generation
in a blocks world domain. This is a simple, familiar problem from the litera-
ture, which is often taken as a benchmark for comparing planners. Planning in
domains amenable of, basically, a propositional fluents encoding has a natural
representation in terms of stable models computations. Some of the reasons are:

— encodings are rather concise and easy to understand;

— the cost of generating a plan grows rapidly with the number of blocks consid-
ered and

— the type of planning needed for our autonomous robot is not too distant from
that considered here.

Our experiments have been carried out using SMODELS , one successful imple-
mentation of stable models programming. For our project, the appealing feature
of SMODELS over its competitors is the companion grounding program LPARSE,
which accepts as input programs with variables, [some types of|functions symbols
and constraints, intended as notation shorthands?.

2 Technically, this means that the Herbrand universe of the programs remains finite; practically, it is

described as a preprocessing phase, carried out by LPARSE that removes functional terms in favor of
internally-constructed constants.

2 Background definitions

The answer sets semantics [GelLif88,GelLif91] is a view of logic programs as sets
of inference rules (more precisely, default inference rules), where a stable model
is a set of literals closed under the program itself. Alternatively, one can see a
program as a set of constraints on the solution of a problem, where each answer set
represents a solution compatible with the constraints expressed by the program.
Consider the simple program {q < not p, not c. p < notq. p < c.}. For instance,
the first rule is read as “assuming that both p and c are false, we can conclude
that ¢ is true.” This program has two answer sets. In the first, ¢ is true while p
and c are false; in the second, p is true while ¢ and ¢ are false. When all literals are
positive, we speak in terms of stable models. In this paper we consider, essentially,
the language DAT ALOG™ for deductive databases, which is more restricted than
traditional logic programming. As discussed in [MarTru99], this restriction is not
a limitation at this stage.

A rule p is defined as usual, and can be seen as composed of a conclusion
head(p), and a set of conditions body(p), the latter divided into positive conditions
pos(p) and negative conditions neg(p). Please refer to [AptBol94] for a thorough
presentation of the syntax and semantics of logic programs. For the sake of clarity
however, let us report the definition of stable models. We start from the subclass
of positive programs, i.e. those where, for every rule p, neg(p) = 0.

Definition 1. (Stable model of positive programs)
The stable model a(I1) of a positive program II is the smallest subset of By such
that for any rule a <— ay,...ay in I1: ay,... ,an, € a(ll) = a € a(I]).

Positive programs are unambiguous, in that they have a unique stable model,
which coincides with that obtained applying other semantics.

Definition 2. (Stable models of programs)
Let IT be a logic program. For any set S of atoms, let II° be a program obtained
from II by deleting (i) each rule that has a formula ‘not A’ in its body with
A €S, and (i) all formulae of the form ‘not A’ in the bodies of the remaining
rules.

IT% does not contain “not,” so that its stable model is already defined. If this
stable model coincides with S, then we say that S is a stable model of I1. In other
words, the stable models of I are characterized by the equation: S = a(IT°).

The answer set semantics is defined similarly by allowing the unary operator
-, called explicit negation, to distinguish it from the classical-logic connective.
What changes is that we do not allow any two contrary literals a, —a to appear
in an answer set.

Gelfond and Lifschitz [GelLif91] show how to compile away explicit negations
by i) introducing extra atoms a',b'... to denote —a,—b,... and ii) considering

only stable models of the resulting program that contain no contrary pair a,a’.
This requirement is captured by adding, for each new atom a', the constraint
< a,a’ to the program. In any case, two-valued interpretations can be forced by
adding rules a < not o’ and o' < not a. for each contrary pair of atoms (resp.
literals).

2.1 Consistency conditions

Unlike with other semantics, a program may have no stable model (answer set),
i.e., be contradictory, like the following: {a < not b. b < not c. ¢ < not a.}, where
no set of literals is closed under the rules. Inconsistency may arise, realistically,
when programs are combined: if they share atoms, a subprogram like that above
may surface in the resulting program.

In the literature, the main (sufficient) condition to ensure the existence of
stable models is call-consistency [Dun92|, which is summarized as follows: no
atom depends on itself via an odd number of negative conditions. This condition
is quite restrictive, e.g., it applies to almost no program for reasoning about
actions and planning seen in the literature (see the examples in [Lif99]). Indeed,
note how in the translation above the definition of a/a’ is not stratified and that
the consistency constraint is mapped into rule false < a,a’, not false, which is
not call-consistent either.

However, some of these authors have shown that this feature does not com-
promise program’s consistency for a large class of cases. The safe cycle condition
of [CosPro99] applies to all programs considered here.

3 Plan specification

The formalization of the Blocks world as a logic program is the main example used
by Lifschitz [Lif99] for introducing answer set planning. Two implementations
have stem from Lifschitz’s definition, Erdem’s [Erd99] and the one introduced
hereby.

Erdem’s solution, which is the closest to Lifschitz’s axioms, uses action and
fluent atoms indexed by time, i.e., on(B,B1,T) is a fluent atom, read as “block
B is on block B1 at time T” while move(B,L,T) is an action, read as “block B is
moved on location (meaning another block or the table surface) L at time T.”

Our solution is closer to standard situation calculus, since it employs flu-
ent and action terms. In fact, our version of the two atoms presented above is
holds(on(B, B1,T) and occurs(move(B, L),T), respectively. Unlike in standard
Situation Calculus, we do not have function symbols to denote ‘next situations’.
This is due in part to earlier limitations of LPARSE, which until recently allowed
only functions on integers. However, by having fluents represented as terms, we
need only two inertia axioms (see listing below); hence, our solution is more

apt than Erdem’s for treating complex planning domains, involving hundreds of
fluents. The illustrations below are courtesy of W. Faber.

PL P Fe

. . [— o]
:

Problem |blocks|steps

P1 4 4

P2 5 6

P3 8 8

P4 11 9

P5 11 11

The price we pay for the convenience of using fluent and action terms is that
whereas Erdem’s rules can easily be transformed to make them suitable for DLV
or CCALC computation, our programs are not easily rephrased for interpreters
other than SMODELS . On the other hand, [FabLeoPfe99] have used planning in
the Blocks world to experiment with their dlv system. However, we felt that this
disadvantage was only transient, as DLV and CCALC are actively pursuing the
development of their system.

To describe our planner, let us start from the specification of the instance.
Basically, we specify the initial and the goal situation®. The initial situation here
is completely described but it is easy to allow for incomplete knowledge and —if
needed— add default assumptions.

Whhbhhhhhhhhhhhhh%h Domain description: P3
block(b0) .

block(bl).

[...]

block (b7).

%AhhARAA initial situation
holds (on(b2,b3),0).
holds(on(b3,b0),0).

holds (on(b0,table),0).
holds (on(b4,b1),0).

holds (on(bl,table),0).
holds (on(b7,b6),0).
holds(on(b6,b5),0).

holds (on(b5,table),0).

holds(top(b2),0).
holds(top(b4),0).
holds (top(b7),0) .
holds (neg(top(b3)),0).
holds (neg(top(b0)),0).
holds (neg(top(b1)),0).
holds (neg(top(b6)),0) .
holds (neg(top(b5)),0).

3 The instance below is from [Erd99].

The goal is given in terms of a constraint to be satisfied at the latest at time
t=depth, where depth is either passed with the SMODELS call or assigned within
the input instance.

WhARLLAL goal state
:-not goal(depth).

goal(T) :- time(T), holds(on(b7,b3),T),
holds(on(b3,b4),T),
holds(on(b4,table),T),

holds (on(b2,b6),T),
holds(on(b6,table),T),
holds(on(b5,b0),T),

holds(on(b0,b1),T),

holds (on(bl,table),T).

Let us now see the general axioms for the Blocks world domain (some base pred-
icate definitions are omitted but easy to understand by their use).
The next set of rules describes the [direct] effect of actions.

holds(on(B,L),T1) :- next(T,T1),
block(B),
location(L),
occurs (move(B,L),T).

holds(top(B),T1) :- next(T,T1),
block(B),
location(L),
occurs (move(B,L),T) .

holds(top(B),T1) :- next(T,T1),
block(B), block(B1),
holds(on(B1,B),T),
location(L),
occurs (move(B1,L),T).

holds(neg(top(B)),T1) :- next(T,T1),
block(B), block(B1),
occurs (move(B1,B),T).

The next set of actions provide static constraints, i.e., make no reference to
next/past state in order to derive the value of fluents at T (neq is the built-in
inequality test).
holds(neg(on(B,L)),T) :- time(T),

block(B),
location(L),
location(L1),

neq(L,L1),
holds(on(B,L1),T).

holds(neg(on(table,L)),T) :- time(T),
location(L).

holds(top(table),T) :- time(T).

The action and fluent description part is ended by the inertia axioms. Note the
slight simplification of using semi-normal defaults in lieu of abnormalities.

holds(F,T1) :- fluent(F), next(T,T1), holds(F,T), not holds(neg(F),T1).

holds (neg(F),T1) :- fluent(F), next(T,T1), holds(neg(F),T), not holds(F,T1).

The following set of rules, called the control module, is crucial for the performance
of the planner. It establishes the fact that in each answer set exactly one action
is performed at each time 0 < 7T < depth — 1 (no action is performed at the last
time). As a consequence, there are in principle |A4|%P% stable models of this set
of rules (where |A| denotes the number of possible actions). This is not the case
in practice since we have inserted several extra conditions that avoid generating
hopeless candidate actions.

hhhhhhhh Control

occurs (move(B,L),T) :- next(T,T1),
block(B),
location(L),
neq(B,L), %hh prevents ‘moving onto itself’
holds(top(B),T), %%k prevents moving a covered block.
holds(top(L),T), %%% prevents moving onto an already-occupied bl.
not diff_occurs_than(move(B,L),T).

diff_occurs_than(move(B,L),T) :- next(T,T1),
block(B),
location(L),
block(B1),
location(L1),
occurs (move(B1,L1),T),
neq(B,B1).

diff_occurs_than(move(B,L),T) :- next(T,T1),
block(B),
block(B1),
location(L),
location(L1),
occurs (move(B1,L1),T),
neq(L,L1).

The rules above are an application of the nondeterministic choice operator by
[SacZan97]. Finally, we have some constraints which further guarantee properties
of the plan.

Whhhhhhhh%h Consistency

:— fluent (F) ,time(T), holds(F,T),holds(neg(F),T).

Whhhh%% Impossibility laws

:— time(T) ,block(B),location(L),occurs(move(B,L),T) ,holds(neg(top(B)),T).
;- time(T) ,block(B) ,block(B1),occurs(move(B,B1),T) ,holds (neg(top(B1)),T).
%hhhhhh can’t move on the same block where it’s already on

:— time(T) ,block(B) ,location(L) ,occurs (move(B,L),T) ,holds(on(B,L),T).

4 Computational results

As it employs function symbols, the ground version of our planner result much
larger than the comparable Erdem’s version. As a result, computation time is also
longer. The user may or may not want to trade performance for the convenience
of using function symbols. The table below reports the timing of finding the
minimal plan for each of the Blocks world problems of [Erd99].

Prob.|DEPTH|| ERDEM [SITCALC-STYLE
P1 4| 0.011 0.100
P2 6]| 1.480 1.900
P3 8|| 42.950 1071.300
P4 91|137.560 —
P5 11 — —

Tablel. Times with DEPTH=length of the minimal solution on a Pentium III 500MHz with SunOS 5.7.

4.1 Linearization

Linearization has been proposed in [KauSel96] to improve performance of SAT-
based planning by reducing the number of atoms of a given instance, i.e., es-
sentially, its search space. Even tough the search space of SMODELS is defined
differently than that of SATPLAN, viz. it corresponds to literal appearing under
negation as failure only [Sim97], we have proved that it is very effective also in
answer set planning.

The idea is to break up the three-parameters predicate occurs(move(A, B),T
into two predicates: move_obj(B,T) and move_dest(L,T). Let | B| be the number
of blocks and |.A| the number of actions. While occurs has |B|* - |T| + |B| - |T|
instances in the normal case, with linearization we consider only 2|B| - |T| + |T|
atoms overall.

The changes to be made to our planner are concentrated in the control module,
listed below. the renaming changes consist in substituting each occurrence of
occurs (no pun intended) with either move_obj or move_dest or both.

YRR Rhhhh %A% Linearized control module
move_obj(B,T) :- time(T),

block(B),

holds(top(B),T),

not diff_obj(B,T).

diff_obj(B,T) :- time(T),
block(B),

block(B1),

neq(B,B1),
move_obj(B1,T).

diff_obj(B,T) :- time(T),
block(B),
not move_obj(B,T).

move_dest(L,T) :- time(T),
location(L),
holds (top(L),T),

block(B), h
move_obj(B,T), % cascading choice
neq(B,L), h

not diff_dest(L,T).

diff_dest(L,T) :- time(T),
location(L),

location(L1),

neq(L,L1),

move_dest (L1,T).

The linearized planner has much appealing performance’:

Prob.|DEPTH||LINEAR

P1 4 0.05
P2 6 0.40
P3 8|| 23.15
P4 9|| 60.15

P5 11|| 189.70
Table2. Times with linearized module and depth = length of the minimal solution.

What is the trade off here? Linearization makes specifying parallel execution of
actions at least awkward [DNK97].

4.2 Overconstraining

Overcostraining is an optimization technique (w.r.t. time) consisting of adding
constraint that are logical consequence of the program rules in order to make
the search backtrack at earlier points. It has been discussed in [KauSel96] and in
the context of SMODELS interpretation by [DNK97]. It is also present in our first
planner: it remains easy to check that, apart from consistency, the constraints
are subsumed by the extra conditions in the body of occurs.

Even tough overconstraining works for optimization of SMODELS interpreta-
tion, there are still some doubts about whether it can be applied successfully in
all cases. In fact, during the experiments with our planner, we noticed that, by
adding certain constraints, we would obtain a dramatic performance improve-
ment (about 50%) without altering the semantics of the program. Of course,

* From now on results represent the average over 2 runs on a Pentium II 400MHz with 300MB RAM
running NetBSD 1.4.1, SMODELS 2.24 and LPARSE 0.99.20.

overconstraining could explain it, except that the constraints are now satisfied
regardless. As an example, let us consider the first additional constraint:

:— time(T) ,block(B),location(L),occurs(move(B,L),T) ,holds(neg(top(B)),T).

Since the predicate occurs/2 is not defined in the (linearized) program anymore,
the conjunction is false, independently from the other predicates. This means
that the constraint can never be applied. Intuitively, this fact should cause, in
the best case, a slight increase in the computation time of the program, due to the
larger size of the ground instance. On the contrary, we experienced the dramatic
performance improvement shown in Table 3. The constraints to which the results
refer to are list below:

:— time(T) ,block(B),location(L),occurs(move(B,L),T) ,holds(neg(top(B)),T). % Constr. 1
:— time(T) ,block(B) ,block(B1),occurs(move(B,B1),T) ,holds(neg(top(B1)),T). % Constr. 2
:— time(T) ,block(B) ,location(L) ,occurs(move(B,L),T) ,holds(on(B,L),T). % Constr. 3

It is evident from the time results that one constraint is enough to produce
the performance improvement. The times of the versions using more than one
additional constraint seem to be slightly greater than the one-constraint version,
but this issue should be further investigated, since the differences are within
experimental error.

We have no convincing explanation for the phenomenon described in this section
yet.

test type file name LPARSE time|SMODELS time |total time
no constraints no-occurs-noc.p3 0.70s 36.15s 36.85s
constraint 1 no-occurs-noc2.p3 0.70s 22.50s 23.20s
constraint 2 no-occurs-noc4.p3 0.70s 22.20s 22.90s
constraint 3 no-occurs-noch.p3 0.70s 22.50s 23.20s
constraints 1 and 2|no-occurs-noc3.p3 0.70s 22.10s 22.80s
all constraints no-occurs.p3 0.70s 22.45s 23.15s

Table3. Experimental results on P3 with/without additional constraints.

4.3 Improving performance further

Experimental results (and common intuition) show that the performance of SMOD-
ELS is, roughly, inversely proportional to the size of the ground instance passed
to the interpreter. So, it would be good practice to reduce as much as possible the
size of the input program by removing any unnecessary rule/atom. On the other
hand, adding constraints may effectively speed up the computation by forcing
SMODELS to backtrack at an earlier stage.

We found a good solution to this trade-off which applies to our planner and
produces about 10% gain on the computational time of SMODELS . The two

constraints achieving this improvement are shown below. Their purpose is two
prevent the planner from trying to perform any move after the goal is reached.

:— time(T) ,block(B),goal(T) ,move_obj(B,T).
:— time(T) ,location(L),goal(T) ,move_dest (LT).

Suppose that, at time t, < depth, the planner achieves its goal. Since the def-
initions of the move_obj and move_dest predicates do not take into consideration
the truth of goal(T), a sequence of useless actions would be generated covering
times ¢t > to. This approach has several drawbacks. First of all, performing the
additional action choices requires computation time, which is, after all, wasted.
Second, since the goal was already reached at time ¢y, any later action sequence
achieves the goal; this means that a large number of models are generated which
differ only for the actions performed after reaching the goal.

The set of constraints that we propose simply prevents any action from be-
ing performed after the goal has been achieved. The experimental results of the
planner with and without the constraints are shown below.

type file name LPARSE time|SMODELS time|total time
w/o constraints |no-occurs.p3 0.70s 22.45s 23.15s
with constraints|no-occurs-e.p3 0.70s 20.77s 21.47s

Table4. Running times for P3 with/without constraints on post-goal actions.

However, this solution does not mean that we are able to capture minimal
plan generation within stable logic programming. Deciding whether a program has
stable models is an NP-complete problem [MarTru99|, while generating a minimal
plan is in A% [Lib99]. All we can hope to achieve, for minimal planning, it to
optimize an algorithm that calls SMODELS as an NP-oracle at most a logarithmic
number of times. See Liberatore’s work ([Lib99] and references therein) for a
discussion on these crucial aspects.

Acknowledgments

S. Costantini has greatly motivated us to pursue this work. E. Erdem’s work set
the framework of our experiments and her lively comments have prompted and
motivated us. I. Niemeld and P. Simons have graciously helped us on-line several
times with their SMODELS implementation. This research was partially supported
by Progetto cofinanziato MURST “Agenti Intelligenti: interazione ed acquisizione
di conoscenza.”

References

[AptBol94]

[BalLan97]

[BarGel94]
[BCP99]

[CosPro99]

[Cos95]

[CheWar96]

[ChoMarTru96]

[DNK97]

[Dun92]

[ELMPS97]

[Erd99]
[FabLeoPfe99]
[Fag94]
[GelLif88]
[GelLif91]
[KauSel96]
[Lib99]

[Lif99]
[MarTru99]

[NieSim98]

[McCTur97]
[SacZan97]
[Sim97]

[SubNauVag95]

Apt, K. R. and Bol, R., 1994. Logic programming and negation: a survey, J. of Logic
Programming, 19/20.

M. Balduccini and G. A. Lanzarone, 1997. Autonomous semi-reactive agent design
based on incremental inductive learning in logic programming. Proc. of the ESSLI’97
Symp. on Logical Approaches to Agent Modeling and Design, pages 1-12. Utrecht
University.

Baral, C. and Gelfond. M., 1994. Logic programming and knowledge representation,
J. of Logic Programming, 19/20.

Brignoli G., Costantini S. and Provetti A., 1999. A Graph Coloring algorithm for
stable models generation. Univ. of Milan Technical Report, submitted for publication.
Costantini S. and Provetti A., 1999. A new method, and new results, for detecting
consistency of knowledge bases under answer sets semantics. Univ. of Milan Technical
Report, submitted for publication.

Costantini S., 1995. Contributions to the stable model semantics of logic programs
with negation, Theoretical Computer Science, 149.

Chen W., and Warren D.S., 1996. Computation of stable models and its integration
with logical query processing, IEEE Trans. on Data and Knowledge Engineering,
8(5):742-747.

Cholewinski P., Marek W. and Truszczynski M., 1996. Default reasoning system
DeReS. Proc. of KR96, Morgan-Kauffman, pp. 518-528.

Dimopoulos Y., Nebel B. and Koehler J., 1997. Encoding Planning Problems in
Nonmonotonic Logic Programs, Proc. of European Conference on Planning, pp. 169—
181.

Dung P.M., 1992. On the Relation between Stable and Well-Founded Semantics of
Logic Programs, Theoretical Computer Science, 105.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F., 1997. A deductive
system for non-monotonic reasoning. Proc. Of the 4th LPNMR Conference, Springer
Verlag, LNCS 1265, pp. 363-374.

Erdem E., 1999. Application of Logic Programming to Planning: Computational Ez-
periments. Proc. of LPNMR’99 Conference, LNAI

Faber W., Leone N. and Pfeifer G., 1999. Pushing Goal Derivation in DLP Compu-
tations. Proc. of LPNMR’99 Conference, LNAI

Fages F., 1994. Consistency of Clark’s completion and ezistence of stable models.
Proc. of 5th ILPS conference.

Gelfond, M. and Lifschitz, V., 1988. The stable model semantics for logic program-
ming, Proc. of 5th ILPS conference, pp. 1070-1080.

M. Gelfond and V. Lifschitz., 1991. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, pp. 365-387.

Kautz H. and Selman B., 1996. Pushing the envelope: Planning, Propositional Logic
and Stochastic Search Proc. of AAAT96.

Liberatore P., 1999. Algorithms and Ezperiments on Finding Minimal Models. Tech-
nical Report of University of Rome “La Sapienza.”

Lifschitz V., 1999. Answer Set Planning. Proc. of LPNMR’99 Conference.

Marek, W., and Truszczynski M., 1999. Stable models and an alternative logic pro-
gramming paradigm. The Journal of Logic Programming.

Niemeld I. and Simons P., 1998. Logic programs with stable model semantics as a
constraint programming paradigm. Proc. of NM’98 workshop. Extended version sub-
mitted for publication.

McCain N. and Turner H., 1997. Causal theories of actions and change. Proc. of
AAAT97 Conference, pp. 460-465.

Sacca D. and Zaniolo C., 1997. Deterministic and Non-Deterministic Stable Models.
J. of Logic and Computation.

Simons P., 1997. Towards Constraint Satisfaction through Logic Programs and the
Stable Models Semantics, Helsinki Univ. of Technology R.R. A:47.

Subrahmanian, V.S., Nau D., and Vago C., 1995. WFS + branch and bound = stable
models, IEEE Trans. on Knowledge and Data Engineering, 7(3):362-377.

