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Abstract In this paper we continue our investigation on the viability of Answer

Set Programming (ASP) as a tool for formalizing, and reasoning about, psycho-

logical models. In the field of psychology, a considerable amount of knowledge is

still expressed using only natural language. This lack of a formalization compli-

cates accurate studies, comparisons, and verification of theories. We believe that

ASP, a knowledge representation formalism allowing for concise and simple rep-

resentation of defaults, uncertainty, and evolving domains, can be used success-

fully for the formalization of psychological knowledge. In previous papers we

have shown how ASP can be used to formalize a rather well-established model of

Short-Term Memory, and how the resulting encoding can be applied to practical

tasks, such as those from the area of human-computer interaction. In this paper

we extend the model of Short-Term Memory and introduce the model of a sub-

stantial portion of Long-Term Memory, whose formalization is made particularly

challenging by the ability to learn proper of this part of the brain. Furthermore,

we compare our approach with various established techniques from the area of

cognitive modeling.

1 Introduction

In this paper we continue our investigation on the viability of Answer Set Programming

(ASP) [1,2,3] as a tool to formalize psychological knowledge and to reason about it.

ASP is a knowledge representation formalism allowing for concise and simple repre-

sentation of defaults, uncertainty, and evolving domains, and has been demonstrated to

be a useful paradigm for the formalization of knowledge of various kinds (e.g. intended

actions [4] and negotiation [5] to name a few examples).

The importance of a precise formalization of scientific knowledge has been known for

a long time (see e.g. Hilbert’s philosophy of physics). Most notably, formalizing a body

of knowledge in an area improves one’s ability to (1) accurately study the properties

and consequences of sets of statements, (2) compare competing sets of statements, and



(3) design experiments aimed at confirming or refuting sets of statements. In the field of

psychology, some of the theories about the mechanisms that govern the brain have been

formalized using artificial neural networks and similar tools (e.g. [6]). That approach

works well for theories that can be expressed in quantitative terms. However, theories

of a more qualitative or logical nature, which by their own nature do not provide precise

quantitative predictions, are not easy to formalize in this way.

In [7], we have presented an ASP-based formalization of the mechanism of Short-Term

Memory (STM). Taking advantage of ASP’s direct executability, i.e. the fact that the

consequences of collections of ASP statements can be directly – and often efficiently

– computed using computer programs, we have also applied our encoding of STM to

practical tasks from the area of human-computer interaction.

However, as argued by various sources (e.g. [8]), to assess the viability of ASP for

knowledge representation and reasoning, researchers need to build a number of theories,

thus testing ASP’s expressive power on a variety of domains. Therefore, in this paper

we continue our investigation by using ASP to formalize a substantial part of the mecha-

nism of Long-Term Memory (LTM), focusing in particular on a more complete account

of the phenomenon of chunking (e.g. [9,10]), where by chunking we mean the brain’s

ability to recognize familiar patterns and store them efficiently (for example, it has

been observed that it is normally difficult for people to remember the sequence CN NIB

MMT VU SA, while most people have no problems remembering the sequence CNN

IBM MTV USA, because each triplet refers to a familiar concept). Whereas chunking

has been partially covered in [7], here we go far beyond the simplified representation of

chunks adopted in our previous paper, and tackle the formalization of the LTM’s ability

to learn chunks upon repeated exposure, which is technically rather challenging. In this

paper, we also compare our approach with various established techniques from the area

of cognitive modeling.

As we already did in previous papers, it is worth stressing that we do not intend to claim

that the psychological models we selected are the “correct” ones. On the contrary, any

objections to the models that may come as a result of the analysis of our formalizations

are a further demonstration of the benefits of formalizing psychological knowledge.

This paper is organized as follows. We start by providing a background on ASP and on

the representation of dynamic domains. Next, we give an account of the mechanics of

STM, LTM, and chunking, as it is commonly found in psychology literature. Then, we

recap our ASP-based formalization of the mechanics of STM. The following section

presents our formalization of the model of LTM and chunking. Finally, we compare

with other approaches and conclude with a discussion on what we have achieved and

on possible extensions.

2 Answer Set Programming and Dynamic Domains

Let us begin by giving some background on ASP. We define the syntax of the language

precisely, but only give the informal semantics of the language in order to save space.

We refer the reader to [1,11] for a specification of the formal semantics. Let Σ be a



propositional signature containing constant, function and predicate symbols. Terms and

atoms are formed as usual in first-order logic. A (basic) literal is either an atom a or

its strong (also called classical or epistemic) negation ¬a. A rule is a statement of the

form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are ground literals and not is the so-called default negation. The

intuitive meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no

reason to believe {lm+1, . . . , ln}, must believe one of hi’s. Symbol← can be omitted

if no li’s are specified.

Often, rules of the form h ← not h, l1, . . . , not ln, where h is a fresh literal, are

abbreviated into ← l1, . . . , not ln, and called constraints. The intuitive meaning of

a constraint is that {l1, . . . , lm, not lm+1, . . . , not ln} must not be satisfied. A rule

containing variables is interpreted as the shorthand for the set of rules obtained by

replacing the variables with all the possible ground terms.

A program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a set of rules over Σ.

We often denote programs just by the second element of the pair, and let the signature

be defined implicitly. Finally, an answer set (or model) of a program Π is one of the

collections of its credulous consequences under the answer set semantics. Notice that

the semantics of ASP is defined in such a way that programs may have multiple answer

sets, intuitively corresponding to alternative views of the specification given by the

program. In that respect, the semantics of default negation provides a simple way of

encoding choices. For example, the set of rules {p ← not q. q ← not p.} intuitively

states that either p or q hold, and the corresponding program has two answer sets, {p},
{q}.

Because a convenient representation of alternatives is often important in the formal-

ization of knowledge, the language of ASP has been extended with constraint literals

[11], which are expressions of the form m{l1, l2, . . . , lk}n, where m, n are arithmetic

expressions and li’s are basic literals as defined above. A constraint literal is satisfied by

a set X of atoms whenever the number of literals from {l1, . . . , lk} that are satisfied by

X is between m and n, inclusive. Using constraint literals, the choice between p and q,

under some set Γ of conditions, can be compactly encoded by the rule 1{p, q}1 ← Γ .

A rule of this form is called choice rule. To further increase flexibility, a constraint lit-

eral m{l(a1, b1, . . .), l(c2, d2, . . .), . . . , l(ck, dk, . . .)}n can also be specified using in-

tentional notation, with an expression m{l(X,Y, . . .) : doma(X) : domb(Y ) : . . .}n,

where X and Y are variables, and relations doma and domb define the domain of the

corresponding variables. We refer the reader to [11] for a more detailed definition of

the syntax of constraint literals and of the corresponding extended rules. Readers who

are familiar with ASP may have noticed that we do not impose restrictions on the domi

relations above. This is done to keep the presentation short. From the perspective of

the implementation, when using ASP parsers that expect each domi to be a domain

predicate, one would have to use a slightly more elaborate encoding of knowledge.

Because of the dynamic nature of STM and LTM, for their formalization we use tech-

niques from the area of reasoning about actions and change. The key elements of the



representation techniques are presented next; we refer the readers to e.g. [12,13] for

more details. Fluents are first-order ground terms, and intuitively denote the properties

of interest of the domain (whose truth value typically depends on time). For example,

an expression of the form on(block1, block2) is a fluent, and may mean that block1 is

on top of block2. A fluent literal is either a fluent f or its negation (¬f ). Actions are also

first-order ground terms. For example, move(block3, block2) may mean that block3 is

moved on top of block2. A set of fluent literals is consistent if, for every fluent f , f and

¬f do not both belong to the set. A set of fluent literals is complete if, for every fluent

f , either f or ¬f belong to the set. The set of all the possible evolutions of a dynamic

domain is represented by a transition diagram, i.e. a directed graph whose nodes – each

labeled by a consistent set of fluent literals – correspond to the states of the domain in

which the properties specified by the fluents are respectively true or false, and whose

arcs – each labeled by a set of actions – correspond to the occurrence of state transitions

due to the occurrence of the actions specified. When complete knowledge is available

about a state, the corresponding set of fluent literals is also complete. When instead a set

of fluent literals is not complete, that means that the knowledge about the corresponding

state is incomplete (e.g. it is unknown whether f or ¬f holds). Incomplete or partial

states are typically used to represent uncertainty about domains.

The size of transition diagrams grows exponentially with the increase of the number of

fluents and actions; a direct representation is thus usually impractical. Instead, transition

diagrams are encoded using an indirect representation, in the form of a domain descrip-

tion in an action language [12], or as a program in ASP (like in [14,15,16]). Here, we

adopt the latter approach.

The encoding is based on the notion of a path in the transition diagram from a given

initial state, corresponding to a particular possible evolution of the domain from that

initial state. The steps in a path are identified by integers (with 0 denoting the initial

state), and logical statements (often called laws) are used to encode, in general terms,

the transitions from one step to the next. The fact that a fluent f holds at a step i in

the evolution of the domain is represented by the expression h(f, i), where relation h

stands for holds. If ¬f is true, we write ¬h(f, i). Occurrences of actions are represented

by expressions of the form o(a, i), saying that action a occurs at step i (o stands for

occurs). An action description is a collection of laws describing the evolution of the

domain, and in particular the changes of state caused by the execution of actions. For

example, the effect of flipping a switch on a connected bulb could be represented by the

action description:

h(on(bulb), S + 1)← ¬h(on(bulb), S),
h(connected(switch, bulb), S),
o(flip(switch), S).

¬h(on(bulb), S + 1)← h(on(bulb), S),
h(connected(switch, bulb), S),
o(flip(switch), S).

Given an action description AD, a description of the initial state σ0 (e.g. σ0 =
{h(f1, 0),¬h(f2, 0), . . .}), and a sequence of occurrences of actions α (e.g. α =



{o(a1, 0), o(a3, 0), o(a4, 1), . . .}), the corresponding path(s) in the transition diagram

can be computed by finding the answer set(s) of AD ∪ σ0 ∪ α.

3 Short-Term Memory, Long-Term Memory, and Chunking

STM is “the memory storage system that allows for short-term retention of information

before it is either transferred to long-term memory or forgotten” [10]. This view is

based on the so called three-stage model of memory [17]: sensory inputs are first stored

in Sensory Memory, which is very volatile and has large capacity; then, a portion of

the inputs is processed – and possibly transformed into more rich representations – and

moved to STM, which is less volatile than Sensory Memory, but of limited capacity.

STM is also often viewed as a working memory, i.e. as a location where information

is processed [18]. Finally, selected information is moved to LTM, which has larger

capacity and longer retention periods.3

Beginning in the 1950s, several studies have been conducted to determine the capacity

of STM. Miller [19] reported evidence showing that the capacity of STM in humans

is of 7 pieces of information. Later studies have lowered the capacity limit of STM to

about 4 pieces of information (e.g. [20]). Interestingly, the limit on the number of pieces

of information that STM can hold does not affect directly the amount of information (in

an information-theoretic sense) that STM can hold. In fact, STM appears to be capable

to storing references to concepts that are stored in LTM. Although one such reference

counts as a single piece of information toward the capacity limit of STM, the amount

of information it conveys can be large. For example, it has been observed that it is

normally difficult for people to remember the 12-letter sequence CN NIB MMT VU SA,

while most people have no problems remembering the sequence CNN IBM MTV USA,

because each triplet refers to a concept stored in LTM, and can thus be represented in

STM by just 4 symbols [9]. The phenomenon of the detection and use of known patterns

in STM is referred to as chunking. The patterns stored in LTM – such as CNN or USA

– are called chunks.

Another limit of STM is that the information it contains is retained only for a short

period of time, often set to about 30 seconds by researchers [10]. 4 This limit can be

extended by performing maintenance rehearsal, which consists in consciously repeat-

ing over and over the information that needs to be preserved. To increase the flexibility

of our formalization, in our encoding we abstract from specific values for the limits of

capacity and retention over time, and rather write our model in a parametric way. This

makes it possible, among other things, to use our formalization to analyze the effects

3 In fact, according to some researchers, LTM has unlimited capacity and retention periods.

When information is forgotten, that is because of an indexing problem, and not because the

information is actually removed from LTM.
4 Notice however that the issue of a time limit on the information stored in STM is somewhat

controversial – see e.g. [20,18]. For example, according to [18], decay is affected by variables

such as the number of chunks that the user is trying to remember, and retrieval interference

with similar chunks.



of different choices for these parameters, effectively allowing us to compare variants of

the theory of STM.

As we mentioned earlier, LTM serves as a long-term storage of information. The lit-

erature describes several types of information that LTM has been found to store and

arrange differently, ranging from information about statements which are known to be

true (or false), to information about episodes of our life (see e.g. [10]). Researchers

claim that, in spite of their being treated differently, the various types of information

interact with each other. For example, information about episodes of our life may be

used by the brain to derive knowledge about statements which are known to be true or

false.

The information stored in LTM appears to serve two main purposes: (1) it can be re-

called in order to perform inference by integrating it with information present in STM,

and (2) it can be used to perform chunking. The conditions under which the memoriza-

tion of information in LTM is triggered appear to be quite complex. Researchers have

observed that repeated exposure to the same pieces of information causes them to be

eventually moved from STM to LTM. Storage is more likely to occur when the expo-

sures are spread over time. Maintenance rehearsal of information in STM can also be

used to promote the transfer to LTM. Because of the amount of information stored in

LTM, proper indexing plays an important role in being able to access the information at

a later time. In order to improve the quality of the indexing for information that is being

stored in LTM, one can replace maintenance rehearsal by elaborative rehearsal, which

consists in consciously thinking about the information of interest and establishing links

with knowledge that is already available.

4 A Formalization of Short-Term Memory

This section provides a brief overview of our formalization of STM. For a complete

description, the reader is invited to refer to [7].

Using a common methodology in ASP-based knowledge representation, we start our

formalization by condensing its natural-language description, as it is found in the lit-

erature, into a number of statements – still written in natural language, but precisely

formulated. Next, the statements are encoded using ASP.

The statements describing STM are:

1. STM is a collection of symbols;

2. The size of STM is limited to ω elements;

3. Each symbol has an expiration counter associated with it, saying when the piece of

information will be “forgotten”;

4. New symbols can be added to STM. If a symbol is added to STM when ω ele-

ments are already in STM, the symbol that is closest to expiring is removed from

STM (“forgotten”). In the case of multiple symbols equally close to expiring, one

is selected arbitrarily;

5. When a symbol is added to STM its expiration counter is reset to a fixed value ε;



6. When maintenance rehearsal is performed, the expiration counters of all the sym-

bols in STM are reset to a constant value ε;

7. At each step in the evolution of the domain, the expiration counter is decreased

according to the duration of the actions performed;

8. When the expiration counter of a symbol in STM reaches zero, the symbol is re-

moved from STM.

9. Simplifying assumption: only a single operation (where by operation we mean ei-

ther addition of one symbol or maintenance rehearsal) can occur on STM at any

given time.

We now show how the statements above are formalized in ASP. Fluent in stm(s) says

that symbol s (where s is a possibly compound term) is in STM; expiration(s, e)
says that symbol s will expire (i.e. will be “forgotten”) in e units of time, un-

less the expiration counter is otherwise altered. Action store(s) says that symbol s

is stored in STM; action main rehearsal says that maintenance rehearsal is per-

formed on the current contents of STM. Relation symbol(s) says that s is a sym-

bol. Relation stm max size(ω) says that the size of STM is limited to ω elements;

stm expiration(ε) states that the symbols in STM expire after ε units of time. Finally,

in order to update the expiration counters based on the duration of the actions executed

at each step, relation dur(i, d) says that the overall duration of step i, based on the

actions that took place, is d units of time.

The direct effect of storing a symbol s in STM is described by the following axioms.5

h(in stm(S), I + 1)← symbol(S), step(I), o(store(S), I).

h(expiration(S, E), I + 1)← symbol(S), stm expiration(E), o(store(S), I).

The above axioms say that the effect of the action is that s becomes part of STM, and

that its expiration counter is set to ε. The next axioms ensure that the size of STM does

not exceed its limit when a new symbol is added:

¬h(in stm(S2), I + 1)←
o(store(S1), I),
stm max size(MX), curr stm size(MX, I),
not some expiring(I), picked for deletion(S2, I).

1{ picked for deletion(S2, I) : oldest in stm(S2, I) }1←
o(store(S1), I),
stm max size(MX), curr stm size(MX, I),
not some expiring(I).

The first axiom states that, if adding a symbol to STM would cause the STM size limit

to be exceeded, then one symbol that is the closest to expiring will be removed from

5 To save space, we drop atoms formed by domain predicates after their first use and, in a few

rules, use default negation directly instead of writing a separate rule for closed-world assump-

tion. For example, if p holds whenever q is false and q is assumed to be false unless it is

known to be true, we might write p ← not q instead of the more methodologically correct

{p← ¬q. ¬q ← not q.}.



STM. Notice that the simplifying assumption listed among the natural language state-

ments above guarantees that it is sufficient to remove one symbol from STM (lifting

the assumption is not difficult, but would lengthen the presentation). The second ax-

iom states that, if multiple symbols are equally close to expiring, then one is selected

arbitrarily. From a practical perspective, this encoding allows to consider the evolu-

tions to STM corresponding to all the possible selections of which symbol should be

forgotten. The definition of auxiliary relation oldest in stm can be found in [7]. The

reader should however note that the two axioms above extend the encoding of [7] by

allowing to deal with cases with symbols equally close to expiring (this situation may

occur, for example, as the result of performing a maintenance rehearsal action, whose

formalization is discussed later). It is worth pointing out that the second axiom can be

easily modified to mimic the behavior formalized in [21], in which an arbitrary symbol

(rather one closest to expiring) is forgotten.

The next axiom (together with auxiliary definitions) says that it is impossible for two

STM-related actions to be executed at the same time.

← o(A1, I), o(A2, I), A1 6= A2, stm related(A1), stm related(A2).

stm related(store(S))← symbol(S).

stm related(maint rehearsal).

The direct effect of performing maintenance rehearsal is formalized by an axiom stating

that, whenever maintenance rehearsal occurs, the expiration counters of all the symbols

in STM are reset:
h(expiration(S, E), I + 1)←

stm expiration(E),
h(in stm(S), I),
o(maint rehearsal, I).

The next group of axioms deals with the evolution of the contents of STM over time.

Simple action theories often assume that fluents maintain their truth value by inertia

unless they are forced to change by the occurrence of actions. In the case of fluent

expiration(s, e), however, the evolution over time is more complex (and such fluents

are then called non-inertial). In fact, for every symbol s in STM, expiration(s, ε) holds

at first, but then expiration(s, ε) becomes false and expiration(s, ε−δ) becomes true,

where δ is the duration of the latest step, and so on, as formalize by the axioms:

noninertial(expiration(S, E))← symbol(S), expiration value(E).

h(expiration(S, E −D), I + 1)←
expiration value(E),
h(expiration(S, E), I),
dur(I, D), E > D,

not different expiration(S, E −D, I + 1),
not ¬h(in stm(S), I + 1).

different expiration(S, E1, I)←
expiration value(E1),
expiration value(E2),
E2 6= E1,

h(expiration(S, E2), I).



The inertia axiom, as well as axioms defining the evolution of fluent in stm(s) depend-

ing on expiration(s, e) and the auxiliary relations, can be found in [7].

5 A Formalization of Long-Term Memory and Chunking

In this section we describe our formalization of LTM. As mentioned earlier, we focus

in particular on the learning of new chunks and on the phenomenon of chunking of the

contents of STM by replacing them with references to suitable chunks from LTM.

In the discussion that follows, we distinguish between chunks, described in Section 3,

and proto-chunks, which are used in the learning of new chunks. Like a chunk, a proto-

chunk provides information about a pattern that has been observed, such as the symbols

it consists of. However, differently from a chunk, a proto-chunk is also associated with

information used to establish when it should be transferred to LTM and transformed

into a chunk, such as the number of times it has been observed and the time elapsed

from its first detection. Furthermore, proto-chunks cannot be used to perform chunking

of the contents of STM.

In order to simplify the presentation, the ASP encoding shown here is focused on deal-

ing with sequences of items, called tokens. (Extending the formalization to arbitrary

data is not difficult.) A token is either an atomic token, such as a digit, or a compound

token, which denotes a sequence of tokens. Given a sequence of tokens, the expression

seq(n, k), denotes the sub-sequence starting at the nth item and consisting of token

k. If k is atomic, then the sub-sequence is the token itself. If k is compound, then the

sub-sequence consists of the atomic elements of k. In the terminology introduced for

the formalization of STM, seq(n, k) is a symbol (see item (1) of Section 4).

As in the previous section, we begin our formalization by providing a natural-language

description consisting of precisely formulated statements. To improve clarity, we orga-

nize the statements in various categories. Category LTM model contains the statements:

1. LTM includes a collection of chunks and proto-chunks;

2. A chunk is a token;6

3. Each chunk and proto-chunk is associated with a set of symbols, called elements;

4. A proto-chunk is associated with counters for the times it was detected and the

amount of time since its first detection.

Category chunking consists of the statements:

5. A chunk is detected in STM if all the symbols that are associated with it are in

STM;

6. When a chunk is detected in STM, the symbols associated with it are removed from

STM and the corresponding chunk symbol is added to STM;

7. A symbol can be extracted from STM if it belongs to STM, or if it is an element of

a chunk that can be extracted from STM; 7

6 Note that a proto-chunk is not considered a token.
7 This statement can of course be applied recursively.



8. Simplifying assumption: chunks can only be detected when STM is not in use (i.e.

no addition of maintenance rehearsal operations are being performed);
9. Simplifying assumption: at every step, at most one chunk can be detected.

Category proto-chunk detection contains the statements:

10. A proto-chunk is present in STM if all the symbols that are associated with it are

in STM; a proto-chunk is detected in STM if it is present in STM, and the sym-

bols associated with it have not been previously used for proto-chunk formation or

detection;
11. When a proto-chunk is detected in STM, the counter for the number of times is

incremented;
12. After a proto-chunk is detected, those particular occurrences of its elements in STM

cannot be used for detection again except after performing maintenance rehearsal.
13. Simplifying assumption: presence of proto-chunks can only be verified when STM

is not in use (see statement (8)), and no chunks are detected.

Category proto-chunk formation consists of the statements:

14. A new proto-chunk is formed by associating with it symbols from STM that have

not yet been used for proto-chunk formation or detection;
15. A proto-chunk can only be formed if there are at least 2 suitable symbols in STM;
16. Simplifying assumption: when a proto-chunk is formed, it is associated with all the

symbols from STM, which have not been previously used for proto-chunk forma-

tion or detection;
17. Simplifying assumption: proto-chunks can only be formed when STM is not in use

(see statement (8)), no chunks are detected, and no proto-chunks are present; 8

Category chunk learning contains the statements:
18. A proto-chunk is replaced by a chunk after being detected at least τ times over a

period of π units of time;
19. When a proto-chunk is replaced by a chunk, the elements associated with the proto-

chunk become associated with the chunk, and the proto-chunk is removed.

5.1 LTM Model

Category LTM model is formalized in ASP by defining suitable fluents and relations (the

actual code is omitted to save space). In particular, fluent in ltm(c) says that chunk

c is in LTM; chunk element(c, s) says that s is an element of c; chunk len(c, l)
says that the number of elements associated with c is l; is pchunk(c) says that c is

a proto-chunk (and is in LTM); pchunk element(c, s) says that s is an element of

proto-chunk c; pchunk len(c, l) says that the number of elements associated with c

is l; times seen(c, n) says that proto-chunk c was detected n times; age(c, a) says

that the age of proto-chunk c (i.e. the time since its first detection) is a; finally,

fluent considered(s) says that symbol s in STM has already been used for proto-

chunk formation or detection. Relation min times promotion(τ) says that a proto-

chunk must be detected τ or more times before it can be transformed into a chunk;

min age promotion(π) says that π units of time must have elapsed from a proto-

chunk’s first detection, before it can be transformed into a chunk.

8 As a consequence, at every step, at most one proto-chunk can be formed.



5.2 Detection of Chunks

Category chunking of statements is formalized as follows. The detection of a chunk is

encoded by auxiliary relation detected(seq(p, c), i), intuitively stating that the symbols

corresponding to chunk c were detected, at step i, starting at position p in the sequence

of tokens stored in STM. The detection occurs, when STM is not in use as per sim-

plifying assumption (8), by checking if there is any chunk whose components are all

in STM. If symbols corresponding to multiple chunks are available in STM, only one

chunk is detected at every step, as per assumption (9). The choice of which chunk is

detected is non-deterministic, and encoded using a choice rule, as follows:

1{ detected(seq(P, C), I)
: chunk(C) : h(in ltm(C), I)
: ¬chunk element missing(seq(P, C), I) }1←

stm idle(I),
chunk detectable(I).

chunk detectable(I)←
stm idle(I),
chunk(C), h(in ltm(C), I),
position(P ),
not chunk element missing(seq(P, C), I).

¬chunk element missing(seq(P, C), I)←
not chunk element missing(seq(P, C), I).

chunk element missing(seq(P, C), I)←
chunk element instance(P, C, I, S),
¬h(in stm(S), I).

chunk element instance(P1, C, I, seq(P1 + P2− 1, T ))←
h(chunk element(C, seq(P2, T )), I).

¬stm idle(I)←
o(A, I), memory related(A).

stm idle(I)←
not ¬stm idle(I).

Relation detected(seq(p, c), i), where c is a chunk, says that sub-sequence seq(p, c)
was detected in STM at step i. When such a sub-sequence is detected in STM, we

say that chunk c was detected in STM. Relation chunk element missing(seq(p, c), i)
says that, at step i, the sub-sequence seq(p, c) is not contained in STM, because one or

more elements of c is missing. Relation chunk detectable(i) says that there exists at

least one chunk c such that the sub-sequence seq(p, c) is in STM for some position p.

Relation chunk element instance(p, c, i, s) says that, at step i, symbol s is an item

of the sub-sequence seq(p, c).

It is interesting to note that the components of a detected chunk are allowed to be located

anywhere in STM. However, now that the model is formalized at this level of detail, one

cannot help but wonder whether in reality the focus of the mechanism of chunking is on

symbols that have been added more recently. We were unable to find published studies

regarding this issue.



The next three axioms state that, when a chunk is detected in STM, the symbols associ-

ated with it are replaced by the chunk symbol in STM9, whose expiration counter is set

to ε.
¬h(in stm(S), I + 1)←

detected(seq(P, C), I),
chunk element instance(P, C, I, S).

h(in stm(seq(P, C)), I + 1)←
detected(seq(P, C), I).

h(expiration(seq(P, C), E), I + 1)←
stm expiration(E),
detected(seq(P, C), I).

Finally, the fact that a symbol can be extracted from STM if it belongs to it, or if it is

an element of a chunk that can be extracted from STM, is encoded by axioms:

from stm(S, I)←
h(in stm(S), I).

from stm(S, I)←
from stm(seq(P, C), I),
chunk element instance(P, C, I, S).

It is worth stressing that it is thanks to ASP’s ability to encode recursive definitions that

this notion can be formalized in such a compact and elegant way.

5.3 Detection of Proto-Chunks

Next, we discuss the formalization of category proto-chunk detection of statements. The

presence of a proto-chunk in STM is determined by the axioms:

pchunk present(seq(P, C), I)←
stm idle(I),
not chunk detectable(I),
h(is pchunk(C), I),
¬pchunk element missing(seq(P, C), I).

some pchunk present(I)←
pchunk present(seq(P, C), I).

The first axiom informally states that, if proto-chunk c is in LTM and the sub-sequence

of all of its elements is found in STM starting from position p, then proto-chunk is

present in STM, and starts at that position. Following simplifying assumption (13),

the axiom is only applicable when STM is not in use, and no chunks are detected.

The definition of relation pchunk element missing(seq(p, c), i) is similar to that of

relation chunk element missing(seq(p, c), i), shown above. The axioms that follow

are a rather straightforward encoding of statement (13), describing the conditions under

9 Our simplifying assumption that at most one chunk can be detected at every step ensures that

the number of items in STM does not increase as a result of the chunking process.



which a proto-chunk is detected:

pchunk detected(seq(P, C), I)←
pchunk present(seq(P, C), I),
not ¬pchunk detected(seq(P, C), I).

¬pchunk detected(seq(P, C), I)←
pchunk present(seq(P, C), I),
pchunk element instance(P, C, I, S),
h(considered(S), I).

Whenever a proto-chunk is detected, the counter for the number of times it was observed

is incremented. Furthermore, the occurrences, in STM, of the symbols that it consists of

are flagged so that they can no longer be used for proto-chunk detection or formation.

The flag is removed when maintenance rehearsal is performed:

h(times seen(C, N + 1), I + 1)←
h(is pchunk(C), I),
pchunk detected(seq(P, C), I),
h(times seen(C, N), I).

h(considered(S), I + 1)←
pchunk detected(seq(P, C), I),
pchunk element instance(P, C, I, S),
h(in stm(S), I).¬h(considered(S), I + 1)←
h(in stm(S), I),
o(maint rehearsal, I).

5.4 Proto-Chunk Formation

The statements in category proto-chunk formation are formalized as follows. First, we

encode the conditions for the formation of a new proto-chunk listed in statements (14)

and (15).

new pchunk(I)←
stm idle(I),
not chunk detectable(I),
not some pchunk present(I),
num avail sym in stm(N, I),
N > 1.

num avail sym in stm(N, I)←
N{ avail sym(S, I) : symbol(S) }N.

avail sym(S, I)←
h(in stm(S), I),
¬h(considered(S), I).

In the axioms above, relation new pchunk(i) intuitively states that a new proto-chunk

can be formed at step i. Relation num avail sym in stm(n, i) says that STM contains

n symbols that are available for chunk formation (that is, that have not been previously

used for proto-chunk formation or detection). Whenever the conditions for chunk for-



mation are met, the following axioms are used to create the new proto-chunk.

h(is pchunk(p(I)), I + 1)←
new pchunk(I).

h(pchunk element(p(I), seq(P2− P1 + 1, T )), I + 1)←
new pchunk(I),
lowest seq index(P1, I),
h(in stm(seq(P2, T )), I),
¬h(considered(seq(P2, T )), I).

lowest seq index(P, I)←
h(in stm(seq(P, T )), I),
not ¬lowest seq index(P, I).

¬lowest seq index(P2, I)←
P2 > P1,

h(in stm(seq(P1, T )), I).

The first axiom causes fluent is pchunk(c, i) to become true. Function term p(·) is

used to assign a name to the new proto-chunk. The name is a function of the current

step. Note that naming convention relies on the simplifying assumption that at most one

proto-chunk is formed at each step. The second statement determines the elements of

the new proto-chunk. The sequence of elements of a proto-chunk is indented start from

position 1. However, because the contents of STM expire over time, all the symbols in

STM may be associated with a position greater than 1. For this reason, in the axiom we

offset the position of each symbol accordingly. The offset is determined by finding the

smallest position of a symbol in STM. More precisely, the third axiom above says that

p is the smallest position that occurs in STM unless it is known that it is not. The last

axiom states that p is not the smallest position that occurs in STM if there is a symbol

in STM whose position is smaller than p.

The next set of axioms resets the age and the counter for the times the proto-chunk was

detected, and describes how the age of a proto-chunk increases from one step to the

next according to the duration of the current step (see Section 6 regarding limitations of

this representation, and ways to improve it). Because these fluents are functional (that

is, each describes a function, with the value of the function encoded as a parameter of

the function itself), we represent them as non-inertial fluents.10

noninertial(times seen(C, N)).

h(times seen(p(I), 1), I + 1)← new pchunk(I).

noninertial(age(C, A)).

h(age(p(I), 0), I + 1)← new pchunk(I).

h(age(C, A + D), I + 1)←
h(is pchunk(C), I), h(age(C, A), I),
dur(I, D), not ¬h(age(C, A + D), I + 1).

10 The non-inertial encoding appears to be more compact than the inertial encoding, in that it

avoids having to write a rule explicitly stating that f(n) becomes false whenever f(n + 1)
becomes true.



5.5 Chunk Learning

Finally, we discuss the formalization of the statements in category chunk learning. The

following axiom determines when the conditions from statement (18) are met:

can be promoted(C, I)←
min times promotion(Nmin),
min age promotion(Amin),
h(is pchunk(C), I),
h(times seen(C, N), I),
N ≥ Nmin,

h(age(C, A), I),
A ≥ Amin.

When the conditions are met, a suitable chunk is added to LTM:

h(in ltm(C), I + 1)←
can be promoted(C, I).

h(chunk element(C, S), I + 1)←
h(is pchunk(C), I),
can be promoted(C, I),
h(pchunk element(C, S), I).

The proto-chunk is removed from LTM with axioms such as the following (the other

axioms are similar and omitted to save space):

¬h(is pchunk(C), I + 1)←
can be promoted(C, I).

5.6 Experiments

To demonstrate that our formalization captures the key features of the mechanisms of

STM, LTM, and chunking, we subjected it to a series of psychological tests. Here we

use variations of the memory-span test. In this type of test, a subject is presented with a

sequence of digits, and is asked to reproduce the sequence [9]. By increasing the length

of the sequence and by allowing or avoiding the occurrence of familiar sub-sequences

of digits, one can verify the capacity limit of STM and the mechanics of LTM and

chunking. Experiments using the basic type of memory-span test were described and

used in [7]. Here we expand the tests by introducing a phase in which the subject learns

chunks, which can be later used to memorize sequences the subject is presented with.

This allows the testing of the detection and formation of proto-chunks, of the learning

of chunks, and of the mechanism of chunking.

Because we are only concerned with correctly modeling the mechanisms of interest,

we abstract from the way digits are actually read, and rather represent the acquisition

of the sequence of digits directly as the occurrence of suitable store(s) actions. Sim-

ilarly, the final reproduction of the sequence is replaced by checking the contents of

STM and LTM at the end of the experiment. As common in ASP, all computations are

reduced to finding answer sets of suitable programs, and the results of the experiments

are determined by observing the values of the relevant fluents in such answer sets.



From now on, we refer to the above formalization of STM, LTM, and chunking by

ΠMEM . Boundary conditions that are shared by all the instances of the memory-span

test are encoded by the set ΠP of rules, shown below. The first two rules of ΠP set

the value of ω to a capacity of 4 symbols (in line with [20]) and the value of ε to 30

time units. The next rule states that each step has a duration of 1 time unit. This set-up

intuitively corresponds to a scenario in which STM has a 30 second time limit on the

retention of information and the digits are presented at a rate of one per second. The

next two rules set the value of τ to 2 detections and the value of π to 3 units of time.

The last set of rules define the atomic tokens for the experiments.

stm max size(4).
stm expiration(30).

dur(I, 1).

min times promotion(2).
min age promotion(3).

token(0). token(1). . . . token(9).

The initial state of STM is such that no symbols are initially in STM. This is encoded

by σSTM :
¬h(in stm(S), 0)← symbol(S).

In the first instance, the subject is presented with the sequence 2, 4. Human subjects

are normally able to reproduce this sequence. Moreover, based on our model of LTM

and chunking, we expect our formalization to form a proto-chunk for the sequence

(intuitively, this simply means that LTM sets up the data structures needed to keep

track of future occurrences of the sequence). The sequence of digits is encoded by set

SPAN1 of rules:

o(store(seq(1, 2)), 0). o(store(seq(2, 4)), 1).

To predict the behavior of the brain and determine which symbols will be in STM at the

end of the experiment, we need to examine the path(s) in the transition diagram from the

initial state, described by σSTM , and under the occurrence of the actions in SPAN1.

As explained earlier in this paper, this can be accomplished by finding the answer set(s)

of Π1 = ΠMEM ∪ΠP ∪ σSTM ∪ SPAN1. It is not difficult to check that, at step 2,

the state of STM is encoded by an answer set containing:

h(in stm(seq(1, 2)), 2), h(in stm(seq(2, 4)), 2),
h(expiration(seq(1, 2), 29), 2), h(expiration(seq(2, 4), 30), 2),

which shows that the sequence is remembered correctly (and far from being forgotten,

as the expiration counters show). We also need to check that the proto-chunk has been

correctly formed. For that, one can observe that the answer set contains:

h(is pchunk(p(2)), 3),
h(pchunk element(p(2), seq(1, 2)), 3),
h(pchunk element(p(2), seq(2, 4)), 3),
h(times seen(p(2), 1), 3),
h(age(p(2), 0), 3).



This shows that a proto-chunk named p(2) has indeed been formed for the sequence

2, 4. The counter for the number of times it has been detected is initially set to 1, and

the age of the proto-chunk is set to 0.

Let us now consider another instance, in which the sequence of digits 2, 4 is presented,

and then, after a brief pause, maintenance rehearsal occurs. The corresponding actions

are encoded by SPAN2 = SPAN1∪{o(maint rehearsal, 4)}. The pause is intended

to provide enough time for the formation of the proto-chunk before maintenance re-

hearsal occurs. As explained earlier, maintenance rehearsal helps human subjects learn

information. Because of the limit we have chosen for τ and π, we expect SPAN2 to

cause a chunk to be formed in LTM. It is not difficult to verify that our formaliza-

tion exhibits the expected behavior. In fact, according to the answer set of program

Π2 = ΠMEM ∪ΠP ∪σSTM ∪SPAN2, the state of LTM at the end of the experiment

is:
h(in ltm(p(2)), 7),
h(chunk element(p(2), seq(1, 2)), 7),
h(chunk element(p(2), seq(2, 4)), 7),

which shows that a new chunk p(2) describing the sequence 2, 4 has been added to

LTM. As a further confirmation of the correctness of the formalization, it is not difficult

to check that the answer set also contains:

h(in stm(seq(1, p(2))), 8),

showing that chunking of the contents of STM occurred as soon as the new chunk

became available.

In the next instance, we perform a thorough test of chunk learning and chunking by pre-

senting the subject with a sequence that is, in itself, too long to fit in STM. We assume

the subject’s familiarity with the area code 806, encoded by the set Γ1 of axioms:

h(in ltm(ac(lbb)), 0).
h(chunk element(ac(lbb), seq(1, 8)), 0).
h(chunk element(ac(lbb), seq(2, 0)), 0).
h(chunk element(ac(lbb), seq(3, 6)), 0).

Initially, the sequence 5, 8, 5 is presented, and maintenance rehearsal is performed as

before, in order to allow the subject to learn a new chunk. Then, the sequence 8, 0, 6−
5, 8, 5 is presented, where “−” represents a 1-second pause in the presentation of the

digits. This sequence is, in principle, beyond the capacity of STM. However, if chunk

learning and chunking are formalized correctly, then the sequence can be chunked using

just two symbols, and thus easily fits in STM.11 The sequence of digits is encoded by

SPAN3:

o(store(seq(1, 5)), 0). o(store(seq(2, 8)), 1). o(store(seq(3, 5)), 2).
o(maint rehearsal, 5).
o(store(seq(1, 8)), 7). o(store(seq(2, 0)), 8). o(store(seq(3, 6)), 9).
o(store(seq(4, 5)), 11). o(store(seq(5, 8)), 12). o(store(seq(6, 5)), 13).

11 The 1-second pause is used to allow sufficient time for the detection of the first chunk. Subject

studies have shown that chunk detection does not occur or occurs with difficulty when the

stimuli are presented at too high a frequency.



From a technical perspective, the experiment is made more challenging by the fact that

5, 8, 5 is initially presented so that it starts at position 1, but later it occurs as a sub-

sequence of 8, 0, 6 − 5, 8, 5, starting from position 4. This allows to verify that chunk

learning and chunking occur in a way that is position-independent. It is not difficult to

check that at step 8, the state of LTM predicted by our formalization includes:

h(in ltm(p(3)), 8),
h(chunk element(p(3), seq(1, 5)), 8),
h(chunk element(p(3), seq(2, 8)), 8),
h(chunk element(p(3), seq(3, 5)), 8),

which shows that the chunk for 5, 8, 5 was learned correctly. At the end of the experi-

ment (we select step 15 to allow sufficient time for the chunking of the final triplet to

occur), the state of STM predicted by our formalization is:

h(in stm(seq(1, ac(lbb))), 15),
h(in stm(seq(4, p(3))), 15),
h(expiration(seq(1, ac(lbb)), 26), 15),
h(expiration(seq(4, p(3)), 30), 15).

As can be seen, the sub-sequence 8, 0, 6 was chunked using the information encoded

by Γ1, while the sub-sequence 5, 8, 5 was chunked using the learned chunk for 5, 8, 5.

Summing up, (1) a chunk for 5, 8, 5 has been learned, and (2) the chunking of the two

sub-sequences has occurred, allowing STM to effectively store a sequence of digits that

is longer than ω symbols.

Although space restrictions prevent us from formalizing alternative theories of STM,

LTM, and chunking, and from performing an analytical comparison, it is worth noting

that even the single formalization presented here allows comparing (similar) variants of

the theories corresponding to different values of parameters ω, ε, τ , and π. One could

for example repeat the above experiments with different parameter values and compare

the predicted behavior with actual subject behavior, thus confirming or refuting some

of those variants.

6 Discussion and Related Work

In this paper we have continued our investigation on the viability of ASP as a tool for

formalizing, and reasoning about, psychological models. Expanding the formalization

from [7], we have axiomatized a substantial portion of LTM, with particular focus on

the mechanisms of chunk learning and of chunking. The resulting formalization has

been subjected to psychological experiments, in order to confirm its correctness and to

show its power.

The formalization allows analysis and comparison of theories, and it allows one to pre-

dict the outcome of experiments, thus making it possible to design better experiments.

Because of the direct executability of ASP, and the availability of ASP-based reason-

ing techniques, it is also possible to use the formalization in experiments involving e.g.

planning and diagnosis (see e.g. [22,23,24]). Various reasons make the formalization



of knowledge of this kind challenging. As we hope to have demonstrated, ASP allows

one to tackle the challenges, thanks to its ability to deal with common-sense, defaults,

uncertainty, non-deterministic choice, recursive definitions, and evolving domains.

We believe it is difficult to find other languages that allow writing a formalization at the

level of abstraction of the one shown here, and that are also directly executable.

An interesting attempt in this direction was made by Cooper et al. in [21]. Their motiva-

tion was similar to ours, in that they wanted to define a language suitable for specifying

cognitive models, and satisfying four key requirement: “(1) being syntactically clear

and succinct; (2) being operationally well defined; (3) being executable; and (4) explic-

itly supporting the division between theory and implementation detail.” The language

proposed by Cooper et al., called Sceptic, is an extension of Prolog that introduces a

forward chaining control structure consisting of rewrite rules and triggers. The rewrite

rules are used to express the procedural control aspects of the program, thus keeping

them separate from the formalization of the theory. An example of a Sceptic statement,

used to describe memory decay in the Soar 4 architecture (see e.g. [25]), is:

memory decay :
parameter(working memory decay, D),
wm match(WME),
wme is terminal(WME),
random(Z),
Z < D

⇒ wm remove(WME).

The intuition is that memory decay occurs with the probability specified by pa-

rameter working memory decay (implemented using random number generation);

when memory decay occurs, one terminal memory element is deleted by generating

a wm remove event. As can be seen from the structure of the Sceptic statement, the

modeling approach adopted by [21] does not explicitly represent the evolution of the

domain over time. Using the terminology adopted here, we would say that a particular

path in the transition diagram is traversed during the execution of the program, but the

path itself is not explicitly represented in the conclusions of the program. Because of

that, it is difficult to analyze such path, and to compare alternative paths whenever mul-

tiple evolutions of the domain are possible (see e.g. the last memory-span test described

in [7]). The approach is also likely to suffer from the known limitations inherited from

Prolog – e.g. regarding the handling of defaults and uncertainty, especially when yield-

ing multiple alternative conclusions – as well as the aspects of procedural flavor such

as the importance of the order of rules within the program and of the elements of the

body within a rule. One rather interesting claim made in [21] is that Sceptic allows to

clearly distinguish between a psychological theory and the specification of the “imple-

mentation details”, such as the definition of when certain conditions occur. To a large

extent, this discussion seems to be motivated by the general lower level of abstraction

of Prolog, compared to ASP, and thus does not apply to our approach. However, the

discussion seems to also apply, at least in part, to the specification of boundary condi-

tions, of which we gave a simple example earlier with the definition of the values of

parameters such as τ and π. The intuition is that the specification of the theory and that



of the boundary conditions should be kept clearly separated. We believe that this can

be achieved by adopting one of the extensions of ASP that provide modules (see e.g.

[26,27]).

In the area of cognitive modeling, quite popular is also the use of cognitive architec-

tures, especially Soar [25] and ACT-R [28]. These are quite sophisticated architectures,

not dissimilar from agent architectures, which often cover all the aspects of information

processing in the brain, from input acquisition, to output generation. Their parametric

and modular structure makes it possible to test alternative theories by replacing suitable

modules or adjusting parameter values. In both Soar and ACT-R, the stress seems to be

on the definition of a specific architecture, with assumptions being made on the way

certain processes occur. Thus, formalization of theories that are not compatible with

those assumptions seems difficult. On the other hand, our approach does not enforce

any particular assumption, and allows greater freedom of formalization. Furthermore,

in the area of cognitive architectures there appears to be no particular interest in, nor

means for, the direct theoretical analysis of the properties of the architecture and their

components. Whereas we have stressed that ASP allows for inspection of the formal-

ization and comparison of alternative axiomatizations, in these architectures the main

tool for analysis appears to be the simulation of the architecture itself, and the analysis

of the experimental results (see e.g. [29]; [21] constitutes a remarkable exception).

As a concluding remark, let us stress that the formalization presented here could be

made richer in various ways. Our formalization of fluents involving actual time, such as

age, is rather simplified. A more sophisticated axiomatization can be obtained by adopt-

ing the techniques from e.g. [30]. This would also allow to model continuous decay.

Several simplifying assumptions made earlier could be lifted by introducing additive

fluents [31]. Furthermore, there may be benefits in describing the interaction between

STM and LTM by using an agent architecture framework such as the one in [32].
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