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Abstract—Traditional AI planning has been used successfully
in many domains, including logistics, scheduling and game
playing. This paper examines how AI planning techniques can be
extended to coordinate teams of unmanned aerial vehicles (UAVs)
in dynamic environments. Specifically challenging are real-world
environments where UAVs and other network-enabled devices
must communicate to coordinate—and communication actions
are neither reliable nor free. Such network-centric environments
are common in military, public safety and commercial applica-
tions, yet most planning research (even multi-agent planning) usu-
ally takes communications among distributed agents as a given.
The emerging application challenge of unmanned systems makes
this problem of central focus. This work examines the problem
of planning, plan monitoring and coordination of the mission
of multiple UAVs in a communication-constrained environment.
The work introduces several abstractions that enable AI planners
to reason about communication and networking knowledge; and
provides the underlying network system the means for including
mission data as part of network operations. This work has been
empirically validated using a distributed network-centric software
evaluation testbed and the results provide guidance to designers
in how to understand and control intelligent systems that operate
in these environments.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) promise to revolu-
tionize the way in which we use our airspace. From talk
of automating the navigation for major shipping companies
to the use of small helicopters as “deliverymen” that drop
your packages at the door, it is clear that our airspaces
will become increasingly crowded in the near future. This
increased utilization and congestion has created the need for
new and different methods of coordinating assets using the
airspace. Currently, airspace management is the job for mostly
human controllers. As the number of entities using the airspace
vastly increases—many of which are autonomous—the need
for improved autonomy techniques becomes evident.

The challenge in an environment full of UAVs is that
the environment is highly dynamic and the communications
environment is uncertain, which makes coordination very
difficult. Communicative actions in such realistic environments
are neither reliable nor free.

This paper presents a novel application of a network-
aware planner and an intelligent plan-aware network layer and
apply this to the problem of UAV coordination. Currently,
AI planning does not incorporate network constraints in the
planning step, nor does the network reason about its state and
optimize for the plan. With network-aware planning, a planner
(either centralized or decentralized) incorporates a network
communications model and estimated conditions as part of

state evaluation. With plan-aware networking, an intelligent
network middleware service is provided the plan and ensures
quality of service (QoS) for plan execution. The approach
provided in this paper focuses on network-aware planning that
incorporates a basic network model (communications range).
This model is simple in nature, however, it demonstrates that
even a slight increase of knowledge in the network state will
affect the mission plan.

The paper is organized as follows: The next section de-
scribes relevant planner systems and reasoning techniques
followed by a motivating scenario that applies to UAV co-
ordination. The Technical Approach describes network-aware
planning using example problem instances, the plan-aware
networking layer components, and empirical results. The fol-
lowing section describes the network-centric evaluation testbed
used for simulations. Finally, the paper concludes with a
discussion and future work.

II. RELATED WORK

Incorporating network properties into planning and
decision-making has been investigated in [1]. The author’s
results indicate that plan execution effectiveness and perfor-
mance is increased with the increased network-awareness dur-
ing the planning phase. The UAV coordination approach in this
current work combines network-awareness during planning
phases with a plan-aware network layer.

The problem of mission planning for UAVs under com-
munication constraints has been addressed in [2], where an
ad-hoc task allocation process is employed to engage under-
utilized UAVs as communication relays. In our work, we do
not separate planning from the engagement of under-utilized
UAVs, and do not rely on ad-hoc, hard-wired behaviors. Our
approach gives the planner more flexibility and fine-grained
control of the plan actions, and allows for the emergence of
sophisticated behaviors.

The architecture adopted in this work is an evolution of
[3], which can be viewed as an instantiation of the BDI agent
model [4], [5]. Here, the architecture has been extended to in-
clude a centralized mission planning phase, and to reason about
other agents’ behavior. Recent related work on logical theories
of intentions [6] can be further integrated into our approach
to allow for a more systematic hierarchical characterization of
the actions, which is likely to increase performance.

Traditionally, AI planning techniques have been used (to
great success) to perform multi-agent teaming, and UAV
coordination. Multi-agent teamwork decision frameworks such



Fig. 1: An example problem instance for UAV coordination.
The home base is the black node in the lower left corner and
the targets are shown as red dots in the upper right corner.
Relays form a mesh and extend the network. The blue nodes
are waypoints for the UAVs. UAVs travel between waypoints
to the targets and back.

as [7] may factor communication costs into the decision-
making. However, the agents do not actively reason about
other agent’s observed behavior, nor about the communication
process. Moreover, policies are used as opposed to reasoning
from models of domains and of agent behavior.

The reasoning techniques used in the present work have
already been successfully applied to domains ranging from
complex cyber-physical systems [8], to agent-based negotiation
[9] and to workforce scheduling [10]. To the best of our
knowledge, however, they have never been applied to domains
involving realistic communications.

High-fidelity multi-agent simulators (e.g., AgentFly [11])
do not account for network dynamism nor provide a real-
istic network communications model. For this reason, we
base our simulator on the Common Open Research Emula-
tor (CORE) [12]. CORE provides network models in which
communications are neither reliable nor free.

III. MOTIVATING SCENARIO

To motivate the need for network-aware planning and
plan-aware networking, consider a simple UAV coordination
problem, depicted in Figure 1, in which two UAVs are tasked
with taking pictures of a set of three targets, and with relaying
the information to a home base.

Fixed relay access points extend the communication range
of the home base. UAVs can share images of the targets with

each other and with the relays when they are within radio
range. A naı̈ve solution to this problem consists of disregarding
the networking component of the scenario, and generating a
mission plan in which each UAV flies to a different set of
targets, takes pictures of them, and flies back to the home base,
where the pictures are downloaded. This solution, however, is
not satisfactory. First, it is inefficient, as it requires that the
UAVs fly all the way back to the home base before the images
can be used. The time it takes for the UAVs to fly back may
easily render the images too outdated to be useful. Second,
disregarding the network during the reasoning process may
lead to mission failure in the case of unexpected events, such
as obstructions disrupting transit to and from the home base
after a UAV has reached a target. Even if the UAVs are capable
of autonomous behavior, they will not be able to complete the
mission unless they take advantage of the network.

Another adopted solution consists of acknowledging the
availability of the network, and assuming that the network is
available throughout plan execution. A corresponding mission
plan would instruct each UAV to fly to a different set of targets,
and take pictures of them, while the network relays the data
back to the home base. This solution is optimistic in that it
assumes that the radio range is sufficient to reach the area
where the targets are located, and that the relays will work
correctly throughout the execution of the mission plan.

This optimistic solution is more efficient than the previous
one, since the pictures are received by the home base soon after
they are taken. Under realistic conditions, however, the strong
assumptions it relies on may easily lead to mission failure—
for example, if the radio range does not reach the area where
the targets are located.

In the present work, the mission planner takes into account
not only the presence of the network, but also its configuration
and characteristics, taking advantage of available resources
whenever possible. A mission planner following this approach
is given information about the radio range of the relays and
determines, for example, that the targets are out of range. A
mission plan that takes this information into account consists
in having one UAV fly to the targets and take pictures, while
the other UAV remains in a position to act as a network bridge
between the relays and the UAV that is taking pictures. This
solution is as efficient as the optimistic solution presented
earlier, but does not rely on the same strong assumptions.

Conversely, when given a mission plan, an intelligent
network middleware service capable of sensing conditions and
modifying network parameters (e.g., modify network routes,
limit bandwidth to certain applications, and prioritize net-
work traffic) is able to adapt the network to provide optimal
communications needed during plan execution. A relay or
UAV running such a middleware is able to interrupt or limit
bandwidth given to other applications to allow the other UAV
to transfer images and information toward home base. Without
this traffic prioritization, network capacity could be reached
prohibiting image transfer.

IV. TECHNICAL APPROACH

In this section, we formulate the problem in more details
and discuss our approach. We discuss separately network-
aware planning and plan-aware networking, however, the two
aspects of this work can be merged in a straightforward way.



A. Problem Formulation
A problem instance for coordinating UAVs to observe

targets and deliver information (e.g., images) to a home base is
defined by a set of UAVs, u1, u2, . . ., a set of targets, t1, t2, . . .,
a (possibly empty) set of fixed radio relays, r1, r2, . . ., and
a home base. The UAVs, the relays, and the home base are
called radio nodes (or network nodes). Two nodes are in radio
contact if they are within a radius ρ from each other, called
radio range1. The UAVs are expected to travel from the home
base to the targets to take pictures of the targets and deliver
them to the home base. A UAV will automatically take a
picture when it reaches a target. If a UAV is within radio
range of another UAV, or a relay, the picture is automatically
shared. The communications network is possibly shared by
multiple, concurrent missions. Thus, traffic over it may be
due not only to the transfer of the pictures of the targets,
but also to other communications, such as audio/video feeds
from remotely controlled UAVs or intelligence reports from
warfighters on the battlefield. From the UAVs’ perspective,
the environment is only partially observable. Features of the
domain that are observable to a UAV u are: (1) which radio
nodes u can and cannot communicate with by means of the
network; and (2) the position of any UAV that is near u.

For this problem instance, the goal is to have the UAVs
take a picture of each of the targets so that (1) the task
is accomplished as quickly as possible, and (2) the total
“staleness” of the pictures is as small as possible. Staleness
is defined as the time elapsed from the moment a picture is
taken, to the moment it is received by the home base. While the
UAVs carry on their tasks, the relays are expected to actively
prioritize traffic over the network in order to ensure mission
success and further reduce staleness.

B. System Architecture
The architecture used in this project follows the BDI agent

model [4], [5] which provides a good foundation because
of its logical underpinning, clear structure and flexibility. In
particular, we build upon instances of this model [13], [3],
[14] that employ directly-executable logical languages with
good computational properties while at the same time ensuring
elaboration tolerance [15] and elegant handling of incomplete
information, non-monotonicity, and dynamic domains.

Figure 2 shows a sketch of the information flow in the
system. Given an initial description of the domain and of the
problem instance, a centralized mission planner finds a plan
that uses the UAVs to accomplish the above goals.

The UAVs execute the plan individually. As plan execu-
tion unfolds network state changes, affecting communications
availability. The UAVs may move out of range of each
other and the relays. Unexpected events, e.g. relays failing
or temporarily becoming disconnected, also affect network
connectivity. When network state changes, UAVs reason in a
decentralized, autonomous manner to over come these issues.
To avoid overheads and communications bottlenecks, reason-
ing is carried out locally with the UAV once the mission starts.
The key to accounting and compensating for state changes is to
actively employ current information about the communications
state in the reasoning processes.

1For simplicity, the radio nodes use comparable network devices, and ρ is
uniform throughout the environment.
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Fig. 2: Information flow in our framework. Note: the tasks in
the various boxes are executed only when necessary.

The reasoning tasks (mission planning, explanation, plan-
ning within the agents) rely on a high-level description of
the environment and of the mission tasks to be performed.
The description also includes any relevant constraints (hard
or soft), priorities, and policies to be taken into consideration
[16], [17]. Solutions are found using state-of-the-art Artificial
Intelligence algorithms [18]. These algorithms are the result
of several decades of research in constraint-based reasoning
and satisfiability solving, and employ learning mechanisms
and other sophisticated techniques that make them capable of
high performance. In fact, their performance is in many cases
superior to that of ad-hoc algorithms. Furthermore, they are
entirely general-purpose, which ensures substantial flexibility
and extensibility of the approach: changes in the environment
or additional requirements can typically be handled by simple
changes in the description provided to the algorithms.

Network-Aware Planning. The planners for each UAV
incorporates network state (for simplicity, just the communi-
cations range is factored into reasoning) into the reasoning
process. For network-aware planning, the mission planner
exploits information about the radio range and the fact that
UAVs are able to relay images between each other.

The next paragraphs outline two experiments, in increasing
order of sophistication, which showcase the features of our
approach, including non-trivial emerging interactions between
the UAVs and the ability to work around unexpected problems
autonomously. The reader is directed to [19] and [20] for a
description of how the agent’s algorithms achieve the behavior
outlined in the experiments.

Example Instance 1. Consider the environment shown in
in Figure 3. Two UAVs, u1 and u2 are initially located at the
home base in the lower left corner. The home base, relays and
targets are positioned as shown in the figure, and the radio
range is set to 7 grid units.



(a) Step 5: u1 is disconnected
from homebase.

(b) Step 6: u2 connects with u1

and transfers images t2 and t3.
(c) Step 7: u2 reconnects with re-
lays, transfers images to the home
base.

Fig. 3: Example instance 1 illustrating “data mule” information relaying between u1 and u2.

The mission planner finds a plan in which the UAVs begin
by traveling toward the targets. While u1 visits the first two
targets, u2 positions itself so as to be in radio contact with u1
(Figures 3a and 3b). Upon receipt of the pictures, u2 moves
to within range of the relays to transmit the pictures to the
home base (Figure 3c). At the same time, u1 flies toward the
final target. UAV u2, after transmitting pictures to home base,
moves to re-establish radio contact with u1 and to receive the
picture of t3. Finally, u2 moves within range of the relays to
transmit picture of t3 to the home base.

Remarkably, in this problem instance the mission plan
establishes u2 as a ”data mule” in order to cope with the limits
of the network. The ”data mule” behavior is well-known in
sensor network applications [21], [22]; however, this behavior
is not hard-coded in the mission planner but rather it emerges
from the consideration of the available options. The data-mule
behavior is selected because it optimizes the evaluation metrics
(mission length and total staleness).

Example Instance 2. Now consider a more challenging
and realistic example (Figure 4) in which the UAVs must cope
with unexpected events occurring during mission execution.
Environment and mission goals are as in the previous example.

The mission planner produces the same plan described
earlier2, in which u2 acts as a “data mule.” The execution
of the plan begins as expected, with u1 reaching the area of
the targets and u2 staying in radio contact with it in order
to receive the pictures of the first two targets (Figure 4a).
When u2 flies back to re-connect with the relays, however, it
observes (“Observe” step of the control loop from 2) that the
home base is unexpectedly not reachable. Hence, u2 uses the
available observations to determine plausible causes (“Explain”
step of the control loop). In this instance, u2 observes that
relays r5, r6, r7 and all the network nodes south of them

2This example’s trajectory used to visit the targets is the same as the
previous example. The corresponding plans are equivalent from the point of
view of all the metrics, and the specific selection of one over the other is due
to randomization used in the search process.

are not reachable via the network. Based on knowledge of
the layout of the network, u2 determines that the simplest
plausible explanation is that those three relays must have
stopped working while u2 was out of radio contact (e.g., started
malfunctioning or have been destroyed). As shown in Figure 4a
this is indeed the case in our experimental set-up, although
it need not be. The planner is capable of operating under
the assumption that its hypotheses are correct, and later re-
evaluate the situation based on further observations, and correct
its hypotheses and re-plan if needed.

Next, u2 replans (“Plan” step of the control loop). The
plan is created based on the assumption that u1 will continue
executing the mission plan. This assumption can be later with-
drawn if observations prove it false. Following the new plan,
u2 moves further South towards the home base (Figure 4b).
Simultaneously, u1 continues with the execution of the mission
plan, unaware that the connectivity has changed and that u2
has deviated from the mission plan. After successfully relaying
the pictures to the home base, u2 moves back towards u1. UAV
u1, on the other hand, reaches the expected rendezvous point,
and observes that u2 is not where expected (Figure 4c). UAV
u1 does not know the actual position of u2, but its absence is
evidence that u2 must have deviated from the mission plan at
some unknown point in time (or possibly have been destroyed,
but for the sake of this example, we disregard destruction of
UAVs). Thus, it is now u1’s turn to replan. Not knowing u2’s
state, u1’s plan is to fly South to relay the missing picture
to the home base on its own. This plan still does not take
into account the unavailability of r5, r6, r7, since u1 has not
yet had a chance to get in radio contact with the relays and
observe the current network connectivity state. The two UAVs
continue with the execution of their new plans and eventually
meet, unexpectedly for both (Figure 4d), and automatically
share between each other the final picture. Both now determine
that the mission can be completed by flying South past the
failed relays, and execute the corresponding actions.

Experimental Comparison. The network-aware approach



(a) Step 6: u2 moves toward re-
lays. Relay nodes 5, 6, and 7 have
failed.

(b) Step 7: u2 re-plans and moves
closer to home base.

(c) Step 8: u2 moves toward u1. (d) Step 9: u2 and u1 recon-
nect and move back toward home
base.

Fig. 4: Example instance 2 illustrates re-planning after relay node failure between steps 5 and 6 forcing the UAVs to re-plan.

to planning provides advantages over the techniques that either
disregard the network, or assume perfect communications.
Figure 5 illustrates a quantitative experimental comparison
between the network-aware approach and one in which the
network is disregarded in terms of mission length and total
staleness.3 The comparison includes the two example instances
discussed earlier (labeled Exp-2 and Exp-4). Of the other
two experiments, Exp-1 was a variant of Exp-2 that could be
solved by with the data-mule positioned in a static location,
while Exp-3 was a variant of Exp-2 with 5 targets. As can
be seen, the network-aware approach is always superior. In
Exp-1, the UAV acting as a data-mule can extend the range
of the network so that all the pictures are instantly relayed to
the home base, reducing total staleness to 0. In Exp-4, it is
worth stressing that the network, which the UAVs rely upon
when using our approach, suddenly fails. One would expect the
network-unaware approach to have an advantage under these
circumstances, but as demonstrated by the experimental results,
by identifying the network issues and working around them,
our approach still ensures a lower total staleness of the pictures.

V. SIMULATION

The simulation for the experimental component of this
work was built using the Common Open Research Emulator
(CORE) [12]. CORE is a real-time network emulator that al-
lows users to create lightweight virtual nodes with full-fledged
network communications stack. CORE virtual nodes can run
unmodified Linux applications in real-time. The CORE GUI
incorporates a basic range-based model to emulate networks
typical in mobile ad-hoc network (MANET) environments.
CORE provides an interface for creating complex network
topologies, node mobility in an environment, and access to
the lower-level network conditions, e.g., network connectivity.

Using CORE as a real-time simulation enviornment allows
agents, represented as CORE nodes to execute mission plans in

3For simplicity we measure mission length and staleness in time steps, but
it is not difficult to extend our approach to use action durations.
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Fig. 5: Performance comparison.

realistic radio environments. For this work, CORE router nodes
represent the home base, relays, and UAVs. The nodes are
interconnected via an ad-hoc wireless network. As the UAVs
move in the environment, CORE updates the connectivity
between other UAVs and relays based on the range dictated
by the built-in wireless model. The radio network model has



limited range and bandwidth capacity. Each node is running the
Optimized Link-State Routing protocol (OLSR) [23], a unicast
MANET routing algorithm, that maintains the routing tables
across the nodes. Maintaining the routing table establishes if
a UAV can reach the home base at any given moment. Using
CORE as the simulator allows us to account for realistic com-
munications in ways not possible with multi-agent simulators
such as AgentFly [11].

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel application of a network-
aware planner and an intelligent plan-aware network layer
to the problem of UAV coordination. The UAV scenarios
considered in this paper are bound to be increasingly common
as more levels autonomy are required to create large-scale
systems. Prior work on distributed coordination and planning
has mostly overlooked or simplified communications dynam-
ics, at best treating communications as a resource or other
planning constraint. Similarly, the effects of the plan on the
communications have not been studied in details.

Our work features an end-to-end integration of AI planning
with simple but more realistic communication models, and
demonstrates the reliability and performance gains deriving
from it. Our experimental evaluation approach yielded a re-
duction in mission length of up to 30% and in total staleness
between 50% and 100%. We expect that, in more complex
scenarios, the advantage of a realistic networking model will
be even more evident. In our experiments, execution time was
always satisfactory, and we believe that several techniques
from the state-of-the-art can be applied to curb the increase
in execution times as the scenarios become more complex.
Because the reasoning is at a high level of abstraction (e.g. at
the level of discrete waypoints rather than detailed navigation),
the search space is contained, making this approach viable for
UAV platforms. The communication model is simple, when
the model deviates too much, the UAV’s ability to cope with
unexpected circumstances will allow them to continue mission
execution.

For the future, we intend to expand the plan-aware net-
working layer with reasoning capabilities, integrate network-
aware planning and plan-aware networking more tightly, and
design and execute experiments demonstrating the advantages
of such a tighter integration. In plan-aware networking, we
take as input the mission plan and knowledge of past and
present network states. The network layer uses this information
at each moment to infer current needs and to make networking
decisions (e.g., routing, QoS) that are in the best interests of the
mission. Additionally, there is a need for more robust exper-
imental evaluations. The focus of the planner and evaluation
was on the planning algorithms that accounted for network
communications state. CORE only provides realistic network
communications. More robust planning and approaches require
realistic UAV systems models to incorporate into the planning
algorithms.
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